Advertisement

Other Metals: Aluminum, Copper, Manganese, Selenium, Vanadium, and Zinc

  • Mitchell D. Cohen
Chapter

Abstract

While aluminum (Al) is one of the most abundant elements encountered in the environment, and some daily exposure is unavoidable, inhalation of Al by the general population is generally considered to be negligible (i.e., 0.14 mg aluminum dust/d [Jones and Bennett, 1986]). Conversely, smelters, miners, and other workers involved in various metal industries are often acutely exposed, accidentally or intentionally, to much higher levels of ambient Al. For example, one study has indicated that aluminum welders were often exposed to localized atmospheres containing 2.4 mg Al/m3, resulting in time-weighted-average intakes of>23 mg A118 hr shift (Sjogren et al., 1985). In addition, because of its demonstrable role as a prophylactic agent against silicotic lung diseases (Denny et al., 1939; Le Bouffant et al., 1977; Begin et al., 1986, 1987; Brown et al., 1989), many miners were intentionally exposed to airborne mixtures of finely-ground aluminum powder containing ≈15% elemental Al and 85% aluminum oxide (alumina; Al2O3) prior to their entering the mineshafts (reviewed in Rifat et al., 1990). Although there is no information describing acute or chronic effects upon human pulmonary health from environmental exposure to airborne Al, there are numerous reports which have described increases in pneumonia, bronchitis, asthma, hard metal pneumoconiosis, lung cancers, and/or pulmonary fibrosis in occupationally-exposed subjects (Gibbs, 1985; Abramson et al., 1989; Chan-Yeung et aI., 1989; Larsson et al., 1989; Schwarz et al., 1994; Soyseth et al., 1995; Kilburn, 1998; Sorgdrager et al., 1998).

Keywords

Alveolar Macrophage Occupational Asthma Ammonium Metavanadate Host Mortality Selenious Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abramson MJ, Wlodarczyk JH, Saunders NA, Hensley MJ. Does aluminum smelting cause lung disease? Am. Rev. Respir. Dis., 1989;139:1042–1057.PubMedGoogle Scholar
  2. ACGIH: American Conference of Government Industrial Hygienists, Documentation of the Threshold Limit Values and Biological Exposure Indices, 5 th Edition . Cincinnati, OH, 1986.Google Scholar
  3. Adkins B, Luginbuhl GH, Gardner DE. Acute exposure of laboratory mice to manganese oxide. Am. Ind. Hyg. Assoc. J., 1980a;41:494–500.CrossRefGoogle Scholar
  4. Adkins B, Luginbuhl GH, Gardner DE. Biochemical changes in pulmonary cells following manganese oxide inhalation. J. Toxicol. Environ. Health, 1980b;6:445–454.CrossRefGoogle Scholar
  5. Adkins B, Luginbuhl GH, Miller FJ, Gardner DE. Increased pulmonary susceptibility to streptococcal infection following inhalation of manganese oxide. Environ. Res., 1980c;23:110–120.CrossRefGoogle Scholar
  6. Al-Bayati MA, Raabe OG, Teague SV. Effect of inhaled dimethylselenide in the Fisher 344 male rat. J. Toxicol. Environ. Health, 1992;37:549–557.PubMedCrossRefGoogle Scholar
  7. Al-Laith M, Pearce FL. Some further characteristics of histamine secretion from rat mast cells stimulated with sodium orthovanadate. Agents Action, 1989;27:65–67.CrossRefGoogle Scholar
  8. Anderson WL, Tomasi TB. Suppression of lymphocyte proliferation by copper-albumin chelates, J. Biol. Chem., 259, 7602–7606, 1984.PubMedGoogle Scholar
  9. Andren HW, Klein DH, Tolmi Y. Selenium in coal-fired steam plant emissions. Environ. Sci. Technol., 1975;9:856–858.CrossRefGoogle Scholar
  10. ATSDR: Agency for Toxic Substances and Disease Registry, Toxicological Profile for Aluminum. Atlanta: U.S. Department of Public Health and Human Services, 1992.Google Scholar
  11. ATSDR: Agency for Toxic Substances and Disease Registry, Toxicological Profile for Vanadium. Atlanta: U.S. Department of Public Heealth and Human Services, 1991.Google Scholar
  12. ATSDR: Agency for Toxic Substances and Disease Registry, Toxicological Profile for Zinc. Atlanta: U.S. Department of Public Health and Human Services, 1994.Google Scholar
  13. Barrie LA, Hoff RM. Five years of air chemistry in the Canadian Arctic. Atmos. Environ., 1985;19:1995–2010.Google Scholar
  14. Beach RS, Gershwin ME, Hurley LS. Zinc, copper, and manganese in immune function and experimental oncogenesis. Nutr. Cancer, 1982;3:172–191.Google Scholar
  15. Begin R, Masse S, Rola-Pleszczynski M, Martel M, Desmarais Y, Geoffroy M, LeBouffant L, Daniel H, Martin J. Aluminum lactate treatment alters the lung biological activity of quartz. Exp. Lung. Res., 1986;10:385–399.Google Scholar
  16. Begin R, Masse S, Sebastien P, Martel M, Bosse J, Dubois F, Geoffroy M, Labbe J. Sustained efficacy of aluminum to reduce quartz toxicity in the lung. Exp. Lung. Res., 1987;13:205–222.Google Scholar
  17. Bell RR, Soliman M, Nonavinakere VK, Hammerbeck DM, Early JL. Cadmium and/or selenium effects on guinea pig lung PGE2, TxB2, and LTC4. Res. Commun. Mol. Pathol. Pharmacol., 1997a;97:233–236.Google Scholar
  18. Bell RR, Soliman M, Nonavinakere VK, Hammerbeck DM, Early JL. Selenium-and cadmium-induced pulmonary functional impairment and cytotoxicity. Toxicol. Lett., 1997;6;90:107–114.PubMedCrossRefGoogle Scholar
  19. Bencko V., Cikrt M. Manganese: A review of occupational and environmental toxicology. J. Hyg. Epidemiol. Microbiol. Immunol., 1984;28:139–148.PubMedGoogle Scholar
  20. Bennett PA, Dixon RJ, Kellie S. The phosphotyrosine phosphatase inhibitor vanadyl hydroperoxide induces morphological alterations, cytoskeletal rearrangements, and increased adhesiveness in rat neutrophil leukocytes. J. Cell Sci., 1993;106:891–901.PubMedGoogle Scholar
  21. Bergstrom R. Acute pulmonary toxicity of manganese dioxide. Scand. J. Work Environ. Health, 1977;3(Suppl. 1):7–41.Google Scholar
  22. Berry JP, Meignan M, Escaig F, Galle P. Inhaled soluble aerosols insolubilised by lysosomes of alveolar cells. Application to some toxic compounds: Electron microprobe and ion microprobe studies. Toxicology, 1988;52:127–139.Google Scholar
  23. Blanc PD, Boushey HA, Wong H, Wintermeyer SF, Bernstein MS. Cytokines in metal fume fever. Am Rev. Respir. Dis., 1993;147:134–138.PubMedCrossRefGoogle Scholar
  24. Blanchard KT, Clay RJ, Morris JB. Pulmonary activation and toxicity of cyclopentadienyl manganese tricarbonyl. Toxicol. Appl. Pharmacol., 1996;136:280–288.CrossRefGoogle Scholar
  25. Brown GM, Donaldson K, Brown DM. Bronchoalveolar leukocyte response in experimental silicosis: Modulation by a soluble aluminum compound. Toxicol. Appl. Pharmacol., 1989;101:95–105.Google Scholar
  26. Brown RF, Marrs TC, Rice P, Masek LC. The histopathology of rat lung following exposure to zinc oxide/hexachloroethane smoke of instillation with zinc chloride followed by treatment with 70% oxygen. Environ. Health Perspect., 1990;85:81–87.CrossRefGoogle Scholar
  27. Buchan RF. Industrial selenosis. Occup. Med., 1947;3:439–456.Google Scholar
  28. Byrne AR, Kosta L. Vanadium in foods and in human body fluids and tissues. Sci. Total Environ., 1978;10:17–30.CrossRefGoogle Scholar
  29. Camner P, Curstedt T, Jarstrand C, Johansson A, Robertson B, Wiernik A. Rabbit lung after inhalation of manganese chloride: A comparison with the effects of chlorides of nickel, cadmium, cobalt, and copper. Environ. Res., 1985;38:301–309.Google Scholar
  30. Camner P, Custedt T, Jarstrand C, Johannsson A, Robertson B, Wiernik A. Rabbit lung after inhalation of manganese chloride: A comparison with the effects of chlorides of nickel, cadmium, cobalt, and copper. Environ. Res., 1985;38:301–309.PubMedCrossRefGoogle Scholar
  31. Carter JD, Ghio AJ, Samet JM, Devlin RB. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol. Appl. Pharmacol., 1997;146:180–188.PubMedCrossRefGoogle Scholar
  32. Castranova V, Bowman L, Miles PR, Reasor MJ. Toxicity of metal ions to alveolar macrophages. Am. J. Ind. Med., 1980;1:349–357.PubMedCrossRefGoogle Scholar
  33. Chan-Yeung M, Enarson DA, MacLean L, Irving D. Longitudinal study of workers in an aluminum smelter. Arch. Environ. Health, 1989;44:134–139.Google Scholar
  34. Chasteen ND. The biochemistry of vanadium. Struct. Bonding, 1983;53:105–138.CrossRefGoogle Scholar
  35. Clay RJ, Morris JB. Comparative pneumotoxicity of cyclopentadienyl manganese tricarbonyl and methylcyclopentadienyl manganese tricarbonyl. Toxicol. Appl. Pharmacol., 1989;98:434 443.Google Scholar
  36. Clinton M. Selenium fume exposure. J. Ind. Hyg. Toxicol., 1947;29:225–226.PubMedGoogle Scholar
  37. Cohen MD, Becker S, Devlin R, Schlesinger RB, Zelikoff JT. Effects of vanadium upon polyI:Cinduced responses in rat lung and alveolar macrophages. J. Toxicol. Environ. Health, 1997;51:591–608.PubMedGoogle Scholar
  38. Cohen MD, Chen CM, Wei Cl. Decreased resistance to Listeria monocytogenes in mice following vanadate exposure: Effects upon the function of macrophages. Int. J. Immunopharmacol., 1989;11:285–292.PubMedCrossRefGoogle Scholar
  39. Cohen MD, Chen LC, Zelikoff JT, Schlesinger RB. Pulmonary retention and distribution of inhaled chromium: Effects of particle solubility and ozone co-exposure. Inhal. Toxicol., 1997;9:843–865.Google Scholar
  40. Cohen MD, Parsons E, Schlesinger RB, Zelikoff JT. Immunotoxicity of in vitro vanadium exposure: Effects on interleukin-1, tumor necrosis factor, and prostaglandin E2 by WEHI-3 macrophages. Int. J. Immunopharmacol., 1993;15:437–446.PubMedCrossRefGoogle Scholar
  41. Cohen MD, Wei CI, Tan H, Kao KJ. Effect of ammonium metavanadate on the murine immune response. J. Toxicol. Environ. Health, 1986;19:279–298.PubMedCrossRefGoogle Scholar
  42. Cohen MD, Wei CI. Effects of ammonium metavanadate treatment upon macrophage glutathione redox cycle activity, superoxide production, and intracellular glutathione status. J. Leukocyte Biol., 1988;44:122–129.PubMedGoogle Scholar
  43. Cohen MD, Yang Z, Qu Q, Schelsinger RB, Zelikoff JT. Vanadium affects macrophage interferon-y binding and -inducible responses. Toxicol. Appl. Pharmacol., 1996a;138:110–120.CrossRefGoogle Scholar
  44. Cohen MD, Yang Z, Zelikoff JT, Schlesinger RB. Pulmonary immunotoxicity of inhaled ammonium metavanadate in Fisher 344 rats. Fundam. Appl. Toxicol., 1996b;33:254–263.CrossRefGoogle Scholar
  45. Cohen MD, Zelikoff IT, Chen LC, Schlesinger RB. Immunotoxicologic effects of inhaled chromium: Role of particle solubility and co-exposure to ozone. Toxicol. Appl. Pharmacol., 1998;152:30–40.Google Scholar
  46. Cohen MD. “Vanadium.” In Experimental Immunotoxicology, JT Zelikoff, P Thomas, eds. London: Taylor and Francis, 1998, pp. 207–229.Google Scholar
  47. Cohen SR. A review of the health hazards from copper exposure. J. Occup. Med., 1974;16:621–624.PubMedCrossRefGoogle Scholar
  48. Conklin AW, Skinner CS, Felten TL, Sanders CL. Clearance and distribution of intratracheally instilled vanadium compounds in the rat. Toxicol. Lett., 1982;11:199–203.PubMedCrossRefGoogle Scholar
  49. Conner MW, Flood WH, Rogers AE, Amdur MO. Lung injury in guinea pigs caused by multiple exposures to ultrafine zinc oxide: Changes in pulmonary lavage fluid. J. Toxicol. Environ. Health, 1988;25:57–69.PubMedCrossRefGoogle Scholar
  50. Contreras GR, Chan-Yeung M. Bronchial reactions to exposure to welding fumes. Occup. Environ. Med., 1997;54:836–839.CrossRefGoogle Scholar
  51. Cooper WC. The health implications of increased manganese in the environment resulting from the combustion of fuel additives: A review of the literature. J. Toxicol. Environ. Health, 1984;14.Google Scholar
  52. Daisey JM. “Chemical Composition of Inhalable Particulate Matter - Seasonal and Intersite Comparisons.” In Toxic Air Pollution: A Comprehensive Study of Non-Criteria Air Pollutants, PJ Lioy, JM Daisey, eds. Chelsea, MI: Lewis Publishing Inc., 1987, pp. 47–63.Google Scholar
  53. Danielsson BR, Khayat A, Dencker L. Fetal and maternal distribution of inhaled mercury vapor in pregnant mice: Influence of selenite and dithiocarbamates. Pharmacol. Toxicol., 1990;67:222–226.Google Scholar
  54. Davies TA. Manganese pneumonitis. Br. J. Ind. Med., 1946;3:111–135.PubMedGoogle Scholar
  55. Davis RL, Milham S. Altered immune status in aluminum reduction plant workers. Am. J. Ind. Med., 1990;18:79–85.PubMedGoogle Scholar
  56. Denny JJ, Robson WD, Irwin DA. The prevention of silicosis by metallic aluminum. Can. Med. Assoc. J., 1939;40:213–228.PubMedGoogle Scholar
  57. DeVoto E, Yokel RA. The biological speciation and toxicokinetics of aluminum. Environ. Health Perspect., 1994;102:940–951.PubMedCrossRefGoogle Scholar
  58. Dinslage-Schlunz A, Rosmanith J. The course of dust elimination from the rat lung after long-term inhalation of zinc oxide. Beit. zur Silikoseforsch. - Pneumokon., 1976;28:79–89.Google Scholar
  59. Dreher KL, Jaskot RH, Lehmann JR, Richards JH, McGee JK, Ghio AJ, Costa DL. Soluble transition metals mediate residual oil fly ash-induced acute lung injury. J. Toxicol. Environ. Health, 1997;50:285–305.PubMedCrossRefGoogle Scholar
  60. Drinker P, Thomson RM, Finn JL. Metal fume fever - IV. Threshold doses of zinc oxide, preventive measures, and the chronic effects of repeated exposures. J. Ind. Hyg., 1927;9:331–345.Google Scholar
  61. Drown DB, Obers SG, Sharma RP. Pulmonary clearance of soluble and insoluble forms of manganese. J. Toxicol. Environ. Health, 1986;17:201–212.PubMedCrossRefGoogle Scholar
  62. Drummond JG, Aranyi C, Schiff LJ, Fenters JD, Graham JA. Comparative study of various methods used for determining health effects of inhaled sulfates. Environ. Res., 1986;41:514–528.Google Scholar
  63. Duncan DD, Lawrence, DA. Four sulfhydryl-modifying compounds cause different structural damage but similar functional damage in murine lymphocytes. Chem.-Biol. Interact., 1988;68:137–152.CrossRefGoogle Scholar
  64. Eckert H, Jerochin S. Copper sulfate-mediated changes of the lung. An experimental contribution to pathogenesis of vineyard sprayer’s lung. Z. Erkrank. Atm. Org., 1982;158:270–276.Google Scholar
  65. Edel J, Sabbioni E. Retention of intratracheally-instilled and ingested tetravalent and pentavalent vanadium in the rat. J. Trace Elem. Electrolytes Health Dis., 1988;2:23–30.PubMedGoogle Scholar
  66. Eduard W, Lie A. Influence of fluoride recovery alumina on the work environment and the health of aluminum potroom workers. Scand. J. Work Environ. Health, 1981;7:214–222.CrossRefGoogle Scholar
  67. Ehrlich R, Findlay JC, Gardner DE. Susceptibility to bacterial pneumonia of animals exposed to sulfates. Toxicol. Lett., 1978;1:325–330.Google Scholar
  68. Ehrlich R. Interactions between environmental pollutants and respiratory infections. Environ. Health Perspect., 1980;35:89–100.CrossRefGoogle Scholar
  69. Eklund A, Arns R, Blaschke E, Hed J, Hjertquist SO, Larsson K, Lowgren H, Nystrom J, Skold CM, Tornling G. Characteristics of alveolar cells and soluble components in bronchoalveolar lavage fluid from non-smoking aluminum potroom workers. Br. J. Ind. Med., 1989;46:782–786.PubMedGoogle Scholar
  70. Elliott GR, van Batenburg MJ, Bonta IL. Copper modulation of macrophage cyclooxygenase metabolite synthesis. Prostaglandins, 1987;34:657–667.PubMedCrossRefGoogle Scholar
  71. Elsayed NM, Hacker AD, Kuehn K, Mustafa MG, Schrauzer GN. Dietary antioxidants and the biochemical response to oxidant inhalation. II. Influence of dietary selenium on the biochemical effects of ozone exposure in mouse lung. Toxicol. Appl. Pharmacol., 1983;71:398–406.PubMedCrossRefGoogle Scholar
  72. EPA: Environmental Protection Agency. Ambient Water Quality Criteria for Copper. Environmental Protection Agency, National Technical Information Service, PB 81–117475Google Scholar
  73. Springfield, VA, 1980. EPA: Environmental Protection Agency. Exposure and Risk Assessment for Zinc. Environmental Protection Agency, EPA 440/4–81–016, Washington, DC, 1980.Google Scholar
  74. EPA: Environmental Protection Agency. Scientific and Technical Assessment Rreport on Manganese. Environmental Protection Agency, EPA-600/6–74–002, Washington, DC, 1975.Google Scholar
  75. Eskew ML, Scheuchenzuber WJ, Scholz RW, Reddy CC, Zarkower A. The effects of ozone inhalation on the immunological response of selenium-and vitamin E-deprived rats. 1986;40:274–284.Google Scholar
  76. Ess SM, Steinegger AF, Ess HJ, Schlatter C. Experimental study on the fibrogenic properties of different types of alumina. Am. Ind. Hyg. Assoc. J., 1993;54:360–370.PubMedCrossRefGoogle Scholar
  77. Evans EF. Casualties following exposure to zinc chloride. Lancet, 1945;2:368–370.CrossRefGoogle Scholar
  78. Evans GA, Garcia GG, Erwin R, Howard OM, Farrar WL. Pervanadate simulates the effects of interleukin-2 (IL-2) in human T-cells and provides evidence for the activation of two distinct tyrosine kinase pathways by IL-2. J. Biol. Chem., 1994;269:23407–23412.PubMedGoogle Scholar
  79. Fine JM, Gordon T, Chen LC, Kinney P, Falcone G, Beckett WS. Metal fume fever: Characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value. J. Occup. Environ. Med., 1997;39:722–726.PubMedCrossRefGoogle Scholar
  80. Fishburn CW, Zenz C. Metal fume fever. A report of a case. J. Occup. Med., 1969;11:142–144.PubMedGoogle Scholar
  81. Fisher GL, McNeill KL, Democko CJ. Trace element interactions affecting pulmonary macrophage cytotoxicity. Environ. Res., 1986;39:164–171.Google Scholar
  82. Fisher GL, McNeill KL, Whaley CB, Fong J. Attachment and phagocytosis studies with murine pulmonary alveolar macrophages. J. Reticuloendothel. Soc., 1978;24:243–252.PubMedGoogle Scholar
  83. Flinn RH, Neal PA, Rinehart WH, Dallavalee JM, Fulton WB, Dooley AE. Chronic Manganese Poisoning in an Ore-Crushing Mill. Public Health Bulletin No. 247, 1940.Google Scholar
  84. Flynn A. In vitro levels of copper, magnesium, and zinc required for mitogen-stimulated T-lymphocyte proliferation. Nutr. Res., 1985;5:487–495.CrossRefGoogle Scholar
  85. Ganrot, PO. Metabolism and possible health effects of aluminum. Environ. Health Perspect., 1986;65:363–441.PubMedGoogle Scholar
  86. Gavett SH, Madison SL, Dreher KL, Winsett DW, McGee JK, Costa DL. Metal and sulfate composition of residual oil fly ash determines airway hyperreactivity and lung injury in rats. Environ. Res., 1997;72:162–172.Google Scholar
  87. Gibbs GW. Mortality of aluminum reduction plant workers, 1950 through 1977. J. Occup. Med., 1985;27:761–770.PubMedCrossRefGoogle Scholar
  88. Glover J. Selenium and its industrial toxicology. Ind. Med., 1970;39:50–54.Google Scholar
  89. Gordon T, Chen LC, Fine JM, Schlesinger RB, Su W, Kimmel TA, Amdur MO. Pulmonary effects of inhaled zinc oxide in human subjects, guinea pigs, rats, and rabbits. Am. Ind. Hyg. Assoc. J., 1992;53:503–509.PubMedCrossRefGoogle Scholar
  90. Goren MB, Swendsen SL, Fiscus J, Miranti C. Fluorescent markers for studying phagosome-lysosome fusio. J. Leukocyte Biol., 1984;36:273–282.PubMedGoogle Scholar
  91. Graham JA, Gardner DE, Waters MD, Coffin DL. Effect of trace metals on phagocytosis by alveolar macrophages. Infect. Immun., 1975;11:1278–1283.Google Scholar
  92. Gusev VA, Danilovskaja YV, Vatolkina OY, Lomonosova OS, Velichkovsky BT. Effect of quartz and alumina dust on generation of superoxide radicals and hydrogen peroxide by alveolar macrophages, granulocytes, and monocytes. Br. J. Ind. Med., 1993;50:732–735.PubMedGoogle Scholar
  93. Gylseth B, Jahr J. Some hygienic aspects of working in aluminum reduction potrooms with special reference to the use of alumina from the dry cleaning process of Soderberg potgases. Staub-Reinhalt. Luft, 1975;35:430–432.Google Scholar
  94. Hakkinen PJ, Haschek WM. Pulmonary toxicity of methylcyclopentadienyl manganese tricarbonyl: Non-ciliated bronchiolar epithelial (Clara) cell necrosis and alveolar damage in the mouse, rat, and hamster. Toxicol. Appl. Pharmacol., 1982;65:11–22.Google Scholar
  95. Harris ED, Gonnerman WA, Savage JE, O’Dell BL. Purification and partial characterization of lysyl oxidase from chick aorta. Biochim. Biophys. Acta, 1974;341:332–344.CrossRefGoogle Scholar
  96. Hashimoto Y, Winchester JW. Selenium in the atmosphere. Environ. Sci. Technol. 1967;1:338–340.CrossRefGoogle Scholar
  97. Hatch GE, Slade R, Boykin E, Hu PC, Miller FJ, Gardner DE. Correlation of effects of inhaled versus intratracheally-injected metals on susceptibility to respiratory infection in mice. Am. Rev. Respir. Dis., 1981;124:167–173.PubMedGoogle Scholar
  98. Hickey RJ, Schoff EP, Clelland RC. Relationship between air pollution and certain chronic disease death rates. Arch. Environ. Health., 1967;15:728–739, 1967.Google Scholar
  99. Hill CH. Influence of time of exposure to high levels of minerals on the susceptibility of chicks to Salmonella gallinarum. J. Nutr., 1980;110:433–436.PubMedGoogle Scholar
  100. Hinderer RK. Toxicity studies of methylcyclopentadienyl manganese tricarbonyl (MMT). Am. Ind. Hyg. Assoc. J., 1979;40:164–167.PubMedCrossRefGoogle Scholar
  101. Hirano S, Ebihara H, Sakai S, Kodama N, Suzuki KT. Pulmonary clearance and toxicity of intratracheally-instilled cupric oxide in rats. Arch. Toxicol., 1993;67:312–317.PubMedCrossRefGoogle Scholar
  102. Hirano S, Sakai S, Ebihara H, Kodama N, Suzuki KT. Metabolism and pulmonary toxicity of intratracheally-instilled cupric sulfate in rats. Toxicology, 1990;64:223–233.PubMedCrossRefGoogle Scholar
  103. Hjortsa E, Qvist J, Bud MI, Thomsen JL, Andersen JB, Wiberg-Jorgensen F, Jensen NK, Jones R, Reid LM, Zapol WM. ARDS after accidental inhalation of zinc chloride smoke. Intensive Care Med., 1988;14:17–24.CrossRefGoogle Scholar
  104. Holness DL, Taraschuk IG, Nethercott JR. Health status of copper refinery workers with specific reference to selenium exposure. Arch. Environ. Health, 1989;44:29l-297.Google Scholar
  105. Homma S, Jones R, Qvist J, Zapol WM, Reid L. Pulmonary vascular lesions in the adult respiratory distress syndrome caused by inhalation of zinc chloride smoke: A morphometric study. Hum. Pathol., 1992;23:45–50.Google Scholar
  106. Hopkins LL, Tilton BE. Metabolism of trace amounts of vanadium48 in rat organs and liver subcellular particles. Am. J. Physiol., 1966;211:169–172.PubMedGoogle Scholar
  107. Igarishi K, David M, Lamer AC, Finbloom DS. In vitro activation of a transcription factor by gamma interferon requires a membrane-associated tyrosine kinase and is mimicked by vanadate. Mol. Cell. Biol., 1993;13:3984–3989.Google Scholar
  108. Imbert V, Peyron JF, Far DF, Mari B, Auberger P, Rossi B. Induction of tyrosine phosphorylation and T-cell activation by vanadate peroxide, an inhibitor of protein tyrosine phosphatases. Biochem. J., 1994;297:163–173.PubMedGoogle Scholar
  109. Ishiyama H, Ogino K, Sato M, Ogura M, Dan S, Hobara T. Histopathological changes induced by zinc hydroxide in rat lungs. Exp. Toxic. Pathol., 1997;49:261–266.Google Scholar
  110. Johansson A, Camner P, Jarstrand C, Wiernik A. Rabbit alveolar macrophages after inhalation of soluble cadmium, cobalt, and copper: A comparison with the effects of soluble nickel. Environ. Res, 1983;31:340–354.Google Scholar
  111. Johansson A, Camner P. Adverse effects of metals on the alveolar part of the lung. Scan. Electron Microsc., 1986;II:631–637.Google Scholar
  112. John W, Kaifer R, Rahn K. Trace element concentrations in aerosols from the San Francisco Bay area. Atmos. Environ., 1973;7:107–118.Google Scholar
  113. Jones DG, Suttle NF. The effect of copper deficiency on the resistance of mice to infection with Pasturella haemolytica. J. Comp. Pathol., 1983;93:143–149.PubMedCrossRefGoogle Scholar
  114. Jones DG. Effects of dietary copper depletion on acute and delayed inflammatory response in mice. Res. Vet. Sci., 1984;37:205–210.Google Scholar
  115. Jones KC, Bennett BG. Exposure of man to environmental aluminum - an exposure commitment assessment. Sci. Total Environ., 1986;52:65–82.CrossRefGoogle Scholar
  116. Kacew S, Parulekar MR, Merali Z. Effects of parenteral vanadium administration on pulmonary metabolism of rats. Toxicol. Lett., 1982;11:119–124.Google Scholar
  117. Kadota S, Fantus IG, Deragon G, Guyda HJ, Posner BI. Stimulation of insulin-like growth factor II receptor binding and insulin receptor kinase activity in rat adipocytes. Effects of vanadate and H2O2. J. Biol. Chem. 1987;262:8252–8256.PubMedGoogle Scholar
  118. Karlsson N, Cassel G, Fangmark I, Bergman F. A comparative study of the acute inhalation toxicity of smoke from TiO2-hexachloroethane and Zn-hexachloroethane pyrotechnic mixtures. Arch. Toxicol., 1986;59:160–166.Google Scholar
  119. Khayat A, Dencker L. Interactions between selenium and mercury in mice: Marked retention in the lung after inhalation of metallic mercury. Chem.-Biol. Interact., 1983;46:283–298.CrossRefGoogle Scholar
  120. Khayat A, Dencker L. Interactions between tellurium and mercury in murine lung and other organs after metallic mercury inhalation: A comparison with selenium. Chem.-Biol. Interact., 1984;50:123–133.CrossRefGoogle Scholar
  121. Kilburn KH. “Pulmonary and Neurologic Effects of Aluminum.” In Environmental and Occupational Medicine, 3 rd Edition,W Rom, ed. Philadelphia: Lippincott-Raven Publishers, 1998, pp. 1065–1073.Google Scholar
  122. Kivuoloto M, Pakarinen A, Pyy L. Clinical laboratory results of vanadium-exposed workers. Arch. Environ. Health, 1980;36:109–1130.Google Scholar
  123. Kivuoloto M, Rasanen O, Rinne A, Rissanen A. Intracellular immunoglobulin in plasma cells of nasal biopsies taken from vanadium-exposed workers. Annt. Anz. Jena., 1981;149:446–450.Google Scholar
  124. Kivuoloto M, Rasanen O, Rinne A, Rissanen, M. Effects of vanadium on the upper respiratory tract of workers in a vanadium factory. A macroscopic and microscopic study. Scand. J. Work Environ. Health, 1979;5:50–58.CrossRefGoogle Scholar
  125. Kivuoloto M. Observations on the lungs of vanadium workers. Br. J. Ind. Med., 1980;37:363–366.Google Scholar
  126. Klarlund JK, Latini S, Forchhammer J. Numerous proteins phosphorylated on tyrosine and enhanced tyrosine kinase activities in vanadate-treated NIH 3T3 fibroblasts. Biochim. Biophys. Acta, 1988;971:112–120.Google Scholar
  127. Knecht EA, Moorman WJ, Clark JC, Hull RD, Biagini RE, Lynch DW, Boyle TJ, Simon SD. Pulmonary reactivity to vanadium pentoxide following subchronic inhalation exposure in a non-human primate animal model. J. Appl. Toxicol., 1992;12:427–434.PubMedCrossRefGoogle Scholar
  128. Knecht EA, Moorman WJ, Clark JC, Lynch DW, Lewis TR. Pulmonary effects of acute vanadium pentoxide inhalation in monkeys. Am. Rev. Respir. Dis., 1985;132:1181–1185.PubMedGoogle Scholar
  129. Koppel C, Baudisch H, Beyer KH, Kooppel I, Schneider V, Fatal poisoning with selenium dioxide. J. Toxicol. Clin. Toxicol., 1986;24:21–35.PubMedCrossRefGoogle Scholar
  130. Kornegay ET, van Heugten PH, Lindemann MD, Blodgett DJ. Effects of biotin and high copper levels on performance and immune response of weanling pigs. J. Anim. Sci., 1989;67:1471–1477.PubMedGoogle Scholar
  131. Kuratsune M, Tokudome S, Shirakusa T, Yoshida M, Tokumitsu Y, Hayano T, Seita M. Occupational lung cancer among copper smelters. Int. J. Cancer, 1974;13:552–558.PubMedCrossRefGoogle Scholar
  132. Kuschner WG, D’Alessandro A, Wintermeyer SF, Wong H, Boushey HA, Blanc PD. Pulmonary responses to purified zinc oxide fume. J. Invest. Med., 1995;43:371–378.Google Scholar
  133. Kuschner WG, D’Alessandro A, Wong H, Blanc PD. Early pulmonary cytokine responses to zinc oxide fume inhalation. Environ. Res., 1997;75:7–11.PubMedCrossRefGoogle Scholar
  134. Labedzka M, Gulyas H, Schmidt N, Gercken G. Toxicity of metallic ions and oxides to rabbit alveolar macrophages. Environ. Res., 1989;48:255–274.PubMedCrossRefGoogle Scholar
  135. Larsson K, Eklund A, Arns R, Lowgren H, Nystrom J, Sundstrom G, Tornling G. Lung function and bronchial reactivity in aluminum potroom workers. Scand. J. Work Environ. Health, 1989;15:296–301.CrossRefGoogle Scholar
  136. Lawrence DA. Heavy metal modulation of lymphocyte activities. I. In vitro effects of heavy metals on primary humoral immune response. Toxicol. Appl. Pharmacol., 1981;57:439–451.Google Scholar
  137. LeBouffant L, Daniel H, Martin J. “The Therapeutic Action of Aluminum Compounds on the Development of Experimental Lesions Produced by Pure Quartz or Mixed Dust.” In Inhaled Particle IV. Part. I, WH Walton, ed. Oxford: Pergamon Press, 1977, pp. 361–371.Google Scholar
  138. Lees R. E. Changes in lung function after exposure to vanadium compounds in fuel oil ash. Br. J. Ind. Med., 1980;37:253–256.PubMedGoogle Scholar
  139. Lehman KB. Study of technically and hygienically important gases and steams. XIV. Foundry or zinc fever. Arch. Hyg., 1910;72:358–381.Google Scholar
  140. Levy BS, Hoffman L, Gottsegen S. Boilermakers’ bronchitis. Respiratory tract irritation associated with vanadium pentoxide during oil-to-coal conversion of a power plant. J. Occup. Med., 1984;26:567–570.PubMedCrossRefGoogle Scholar
  141. Lewis AJ. The role of copper in inflammatory disorders. Agents Action, 1982;15:513–519.CrossRefGoogle Scholar
  142. Lindenschmidt RC, Driscoll KE, Perkins MA, Higgins JM, Maurer JK, Belfiore KA. The comparison of a fibrogenic and two non-fibrogenic dusts by bronchoalveolar lavage. Toxicol. Appl. Pharmacol., 1990;102:268–281.Google Scholar
  143. Lioy PJ, Wolff GT, Kneip TJ. Toxic airborne elements in the New York metropolitan area. J. Air Pollut. Control Assoc., 1978;28:510–512.CrossRefGoogle Scholar
  144. Lipsky PE, Ziff M. Inhibition of human helper T-cell function in vitro by D-penicillamine and CuSO4. J. Clin. Invest., 1980;65:1069–1076.PubMedCrossRefGoogle Scholar
  145. Lipsky PE. Immunosuppression by D-penicillamine in vitro: Inhibition of human T-lymphocyte proliferation by copper-or ceruloplasmin-dependent generation of hydrogen peroxide and protection by monocytes. J. Clin. Invest., 1984;73:53–654.PubMedCrossRefGoogle Scholar
  146. Lipsky PE. Modulation of T-lymphocyte function by copper and thiols. Agents Action, 1981;8 (Suppl.):85–102.Google Scholar
  147. Lison D, Lardot C, Huaux F, Zanetti G, Fubini B. Influence of particle surface area on the toxicity of insoluble manganese dioxide dusts. Arch. Toxicol., 1997;71:725–729.Google Scholar
  148. Ljunggren KG, Lidums V, Sjogren B. Blood and urine concentrations of aluminum among workers exposed to aluminum flake powders. Br. J. Ind. Med., 1991;48:106–109.Google Scholar
  149. Loranger S, Zayed J. Environmental contamination and human exposure to airborne total and respirable manganese in Montreal. J. Air Waste Manage. Assoc., 1997;47:983–989.CrossRefGoogle Scholar
  150. Ludwig, JC, Chvapil M. “Effects of Metal Ions on Lysosomes.” In Trace Elements in the Pathogenesis and Treatment of Inflammation, Agents and Actions, Supplement Vol. 8, KD Rainsford, K Brune, MW Whitehouse, eds. Basel, Switzerland: Birkhauser-Verlag, 1981, pp. 65–84.Google Scholar
  151. Lukasewycz OA, Prohaska JR, Meyer SG, Schmidtke JR, Hatfield SM, Marder P. Alterations in lymphocyte subpopulations in copper-deficient mice. Infect. Immun., 1985;48:644–647.Google Scholar
  152. Lukasewycz OA, Prohaska JR. Lymphocytes from copper-deficient mice exhibit decreased mitogen reactivity. Nutr. Res., 1983;3:335–341.CrossRefGoogle Scholar
  153. Lukasewycz OA, Prohaska JR. The immune response in copper deficiency. Ann. N.Y. Acad. Sci., 1990;587:147–159.PubMedGoogle Scholar
  154. Lundborg M, Camner P. Lysozyme levels in rabbit lung after inhalation of nickel, cadmium, cobalt, and copper chlorides. Environ. Res., 1984;34:335–342.Google Scholar
  155. Lundborg M, Lind B. Camner P. Ability of rabbit alveolar macrophages to dissolve metals. Exp. Lung Res., 1984;7:11–22.CrossRefGoogle Scholar
  156. Lutsenko LA, Borisenkova RV, Gvozdeva LL, Skriabin S, Ivanova LG. Fibrogenic and general toxic effects of copper and nickel sulfide ore dust. Med. Truda Prom. Ekol., 1997;5:38–43.Google Scholar
  157. Lyle WH, Payton JE, Hui M., Haemodialysis and copper fever. Lancet, 1976;2:1324–1325.CrossRefGoogle Scholar
  158. Maigetter RZ, Ehrlich R, Fenters JD, Gardner DE. Potentiating effects of manganese dioxide on experimental respiratory infections. Environ. Res., 1976;11:386–391.Google Scholar
  159. Mali JL, Carter A, Dolovich J. Occupational asthma due to zinc. Eur. Respir. J., 1993;6:447–450.Google Scholar
  160. Mali JL, Carter A. Occupational asthma due to fumes of galvanised metal. Chest, 1987;92:375–376.CrossRefGoogle Scholar
  161. Mans TC, Clifford WE, Colgrave HF. Pathological changes produced by exposure of rabbits and rats to smokes from mixtures of hexachloroethane and zinc oxide. Toxicol. Lett. 1983;19:247–252.Google Scholar
  162. Matarese SL, Matthews JI. Zinc chloride (smoke bomb) inhalational lung injury. Chest, 1986;89:308–309.PubMedCrossRefGoogle Scholar
  163. McCord CP. Metal fume fever as an immunological disease. Ind. Med. Surg., 1960;29:101–106.Google Scholar
  164. Medinsky MA, Cuddihy RG, Griffith WC, McClellan RO. A simulation model describing the metabolism of inhaled and ingested selenium compounds. Toxicol. Appl. Pharmacol., 1981a;59:54–63.CrossRefGoogle Scholar
  165. Medinsky MA, Cuddihy RG, Hill JO, McClellan RO. Toxicity of selenium compounds to alveolar macrophages. Toxicol. Lett., 1981b;8:829–293.Google Scholar
  166. Medinsky MA, Cuddihy RG, McClellan RO. Systemic absorption of selenious acid and elemental selenium aerosols in rats. J. Toxicol. Environ. Health, 1981c;8:917–928.CrossRefGoogle Scholar
  167. Migally N, Murthy RC, Doye A, Zambernard J. Changes in pulmonary alveolar macrophages in rats exposed to oxides of zinc and nickel. J. Submicrosc. Cytol., 1982;14:621–626.PubMedGoogle Scholar
  168. Montero MR, Guerri C, Ribelles M, Grisoia S. Inhibition of protein synthesis in cell cultures by vanadate and in brain homogenates of rats fed vanadate. Physiol. Chem. Phys., 1981;13:281–287.Google Scholar
  169. Morgan DL, Shines CJ, Jeter SP, Blazka ME, Elwell MR, Wilson RE, Ward SM Price HC, Moskowitz PD. Comparative pulmonary absorption, distribution, and toxicity of copper gallium diselenide, copper indium diselenide, and cadmium telluride in Sprague-Dawley rats. Toxicol. Appl. Pharmacol., 1997;147:399–410.Google Scholar
  170. Morgan DL, Shines CJ, Jeter SP, Wilson RE, Elwell MR, Price HC, Moskowitz PD. Acute pulmonary toxicity of copper gallium diselenide, copper indium diselenide, and cadmium telluride intratracheallyinstilled into rats. Environ. Res., 1995;71:16–24.Google Scholar
  171. Morrow PE, Gibb FR, Gazioglu KM. A study of particulate clearance from the human lungs. Am. Rev. Respir. Dis., 1967;96:1209–1221.PubMedGoogle Scholar
  172. Morrow PE, Gibb FR, Johnson L. Clearance of insoluble dust from the lower respiratory tract. Health Phys., 1964;10:543–555.PubMedCrossRefGoogle Scholar
  173. Murthy RC, Migally N, Doye A, Zambernard J. Ultrastructural changes in rat alveolar macrophages exposed to oxides of copper and cadmium., J. Submicrosc. Cytol., 1982;14:347–353.PubMedGoogle Scholar
  174. Musk AW, Tees JG. Asthma caused by occupational exposure to vanadium compounds. Med. J. Australia, 1982;1:183–184.Google Scholar
  175. Nantel AJ, Brown M, Dery P, Lefebvre M. Acute poisoning by selenious acid. Vet. Hum. Toxicol., 1985;27:531–533.Google Scholar
  176. NAS: National Academy of Sciences. Committee on Biologic Effects of Atmospheric Pollutants, Division of Medical Sciences, National Research Council: Manganese. Washington, DC: National Academy of Sciences, 1973, pp. 101–113.Google Scholar
  177. Nechay BR, Nanninga LB, Nechay PE, Post RL, Grantham JJ, Macara IG, Kubena LF, Phillips TD, Nielsen FH. Role of vanadium in biology. Fed. Proc., 1986;45:123–132.Google Scholar
  178. Nemery B. Metal toxicity and the respiratory tract. Eur. Respir. J., 1990;3:202–219.Google Scholar
  179. Newberne PM, Hurt CE, Young VR. The role of diet and the reticuloendothelial system in the response of rats to Salmonella typhimurium infection. Brit. J. Exp. Pathol., 1968;49:448–457.Google Scholar
  180. Nilsen AM, Mylius EA, Gullvag BM. Alveolar macrophages from expectorates as indicators of pulmonary irritation in primary aluminum reduction plant workers. Am. J. Ind. Med., 1987;12:101–112.PubMedCrossRefGoogle Scholar
  181. NIOSH: National Institute for Occupational Safety and Health. National Occupational Exposure Survey (1980–1983). Washington, DC: United States Department of Health and Human Services, 1984. NIOSH: National Institutes for Occupational Safety and Health. Pocket Guide to Chemical Hazards: 5 th Edition. Washington, DC: United States Department of Health and Human Services, 1985, pp. 234–235.Google Scholar
  182. Nriagu JO, Pacyna JM. Quantitative assessment of worldwide contamination of air, waiter, and soils by trace metals. Nature, 1988;333:134–139.PubMedCrossRefGoogle Scholar
  183. O’Dell BL. Roles for iron and copper in connective tissue biosynthesis. Phil. Trans. Royal Soc. Lond. B, 1981;294:91–104.Google Scholar
  184. Oberg SG, Parker, RD, Sharma, RP. Distribution and elimination of intratracheally-administered vanadium compound in the rat. Toxicology, 1978;11:315–323.PubMedCrossRefGoogle Scholar
  185. Oh S, Lee M, Chung C. Protection of phagocytic macrophages from peroxidative damage by selenium and vitamin E. Yonsei Med. J., 1982;23:101–109.Google Scholar
  186. Ondov JM, Zoller WH, Gordon Ge. Trace element emissions on aerosols from motor vehicles. Environ. Sci. Technol., 1982;16:3188–328.CrossRefGoogle Scholar
  187. OSHA: Occupational Safety and Health Administration. United States Department of Labor, Washington, DC, 1989.Google Scholar
  188. Ostiguy G, Vaillancourt C, Begin R. Respiratory health of workers exposed to metal dusts and foundry fumes in a copper refinery. Occup. Environ. Med., 1995;52:204–210.PubMedCrossRefGoogle Scholar
  189. Paschoa AS, Wrenn ME, Singh MP, Bruenger FW, Miller SC, Cholewa M, Jones, KW. Localization of vanadium-containing particles in the lungs of uranium/vanadium miners. Biol. Trace Elem. Res., 1987;13:275–282.Google Scholar
  190. Patterson JW, Allen HE, Scala JJ. Carbonate precipitation for heavy metal pollutants. J. Water Pollut. Control Fed., 1977;2397–2410.Google Scholar
  191. Peoples SM, McCarthy JF, Chen, LC, Eppelsheimer D, Amdur MO. Copper oxide aerosol: Generation and characterization. Am. Ind. Hyg. Assoc. J., 1988;49:271–276.PubMedCrossRefGoogle Scholar
  192. Pierce LM, Alessandrini F, Godleski JJ, Paulauskis JD. Vanadium-induced chemokine mRNA expression and pulmonary inflammation. Toxicol. Appl. Pharmacol., 1996;138:1–11.CrossRefGoogle Scholar
  193. Pimentel JC, Marques F. Vineyard sprayer’s lung: A new occupational disease. Thorax, 1969;24:678–688.PubMedCrossRefGoogle Scholar
  194. Piscator M. Health hazards from inhalation of metal fumes. Environ. Res., 1976;11:268–270.Google Scholar
  195. Pocino M, Baute L, Malave I. Influence of the oral administration of excess copper on the immune response. Fundam. Appl. Toxicol., 1991;16:249–256.CrossRefGoogle Scholar
  196. Pocino M, Malave I, Baute L. Zinc administration restores the impaired immune response observed in mice receiving excess copper by oral route. Immunopharmacol. Immunotoxicol., 1990;12:697–713.CrossRefGoogle Scholar
  197. Pritchard RJ, Ghio AJ, Lehmann JR, Winsett DW, Tepper JS, Park P, Gilmour MI, Dreher KL, Costa DL. Oxidant generation and lung injury after particulate air pollutant exposure increase with the concentrations of associated metals. Inhal. Toxicol., 1996;8:457–477.CrossRefGoogle Scholar
  198. Prohaska JR, Lukasewycz OA. Copper deficiency suppresses the immune response of mice, Science, 1981;213:559–561.PubMedCrossRefGoogle Scholar
  199. Pumiglia KM, Lau L, Huang C, Burroughs S, Feinstein MB. Activation of signal transduction in platelets by the tyrosine phosphatase inhibitor pervanadate (vanadyl hydroperoxide). Biochem. J., 1992;286:441–449.PubMedGoogle Scholar
  200. Purves D. “Trace Element Contamination of the Atmosphere.” In Trace Element Contamination of the Environment, D Purves, ed. New York: Elsevier, 1977, pp. 62–72.Google Scholar
  201. Ragaini RC, Ralston HR, Roberts, N. Environmental trace metal contamination in Kellogg, Idaho, near a lead smelting complex. Environ. Sci. Technol., 1977;11:773–781.CrossRefGoogle Scholar
  202. Raisfeld IH, Chu P, Hart NK, Lane A. A comparison of the pulmonary toxicity produced by metal-free and copper-complexed analogs of bleomycin and phleomycin. Toxicol. Appl. Pharmacol., 1982;63:351–362.Google Scholar
  203. Rehder D. “Inorganic Considerations on the Function of Vanadium in Biological Systems.” In Vanadium and Its Role in Life; Metal Ions in Biological Systems,Vol. 31, H Sigel, A Sigel, eds. New York: Marcel Dekker, Inc., 1995, pp. 1–44.Google Scholar
  204. Rhoads K, Sanders CL Lung clearance, translocation, and acute toxicity of arsenic, beryllium, cadmium, cobalt, lead, selenium, vanadium, and ytterbium oxides following desposition in rat lung. Environ. Res., 1985;36:359–378.Google Scholar
  205. Rifat SL, Eastwood MR, Crapper McLachlan DR, Corey PN. Effect of exposure of miners to aluminum powder. Lancet, 1990;336:1162–1165.PubMedCrossRefGoogle Scholar
  206. Rollin HB, Theodorou P, Kilroe-Smith TA. Deposition of aluminum in tissues of rabbits exposed to inhalation of low concentrations of Al2O3. Br. J. Ind. Med., 1991;48:389–391.PubMedGoogle Scholar
  207. Sagripanti JL, Goering PL, Lamanna A. Interaction of copper with DNA and antagonism by other metals. Toxicol. Appl. Pharmacol., 1991;110:477–485.Google Scholar
  208. Saric M, Holetic A, Ofner E. Acute respiratory diseases in a manganese contaminated area. Proc. Intl. Conf. Heavy Metals Environ., 1977;3:389–398.Google Scholar
  209. Saric M. Occupational and environmental exposures and non-specific lung disease - A review of selected studies. Isr. J. Med. Sci., 1992;28:509–512.Google Scholar
  210. Schecter A, Shanske W, Stenzler A, Quintilian H, Steinberg H. Acute hydrogen selenide inhalation. Chest, 1980;77:554–555.PubMedCrossRefGoogle Scholar
  211. Schiff LJ, Graham JA. Cytotoxic effect of vanadium and oil-fired fly ash on hamster tracheal epithelium. Environ. Res., 1984;34:390–402.Google Scholar
  212. Schwarz YA, Kivity S, Fischbein A, Ribak Y, Fireman E, Struhar D, Topilsky M, Greif J. Eosinophilic lung reaction to aluminum and hard metal. Chest, 1994;105:1261–1263.PubMedCrossRefGoogle Scholar
  213. Seglen PO, Gordon PB. Vanadate inhibits protein degradation in isolated rat hepatocytes, J. Biol. Chem., 1981;256:7699–7703.PubMedGoogle Scholar
  214. Sharma RP, Flora SJ, Brown DB, Oberg, SG. Persistence of vanadium compounds in lungs after intratracheal instillation in rats. Toxicol. Ind. Health, 1987;3:321–329.Google Scholar
  215. Singh J, Kaw JL, Zaidi SH. Early biochemical response of pulmonary tissues to manganese dioxide. Toxicology, 1977;8:177–184.PubMedCrossRefGoogle Scholar
  216. Sjogren B, Elinder C, Lidums V, Chang G. Uptake and urinary excretion of aluminum among welders. Int. Arch. Occup. Environ. Health, 1988;60:77–79.Google Scholar
  217. Sjogren B, Lidums V, Hakansson M, Hedstrom L. Exposure and urinary excretion of aluminum during welding. Scand. J. Work Environ. Health, 1985;11:39–43.CrossRefGoogle Scholar
  218. Skornik WA, Brain JD. Relative toxicity of inhaled metal sulfate salts for pulmonary macrophages. Am. Rev. Respir. Dis., 1983;128:297–303.PubMedGoogle Scholar
  219. Smith KL, Lawrence DA. Immunomodulation of in vitro antigen presentation by cations. Toxicol. Appl. Pharmacol., 1988;96:476–484.Google Scholar
  220. Smyth LT, Ruhf RC, Whitman NE, Dugan T. Clinical manganism and exposure to manganese in the production and processing of ferromanganese alloy. J. Occup. Med., 1973;15:101–109.PubMedGoogle Scholar
  221. Snella M. Manganese dioxide induces alveolar macrophage chemotaxis for neutrophils in vitro. Toxicology, 1985;34:153–159.PubMedCrossRefGoogle Scholar
  222. Sorahan T, Lister A, Gilthorpe MS, Harrington JM. Mortality of copper cadmium alloy workers with special reference to lung cancer and non-malignant diseases of the respiratory system, 1946–1992. Occup. Environ. Med., 1995;52:804–812.Google Scholar
  223. Sorgdrager B, de Looff AJ, de Monchy JG, Pal TM, Dubois AE, Rijcken B. Occurrence of occupational asthma in aluminum potroom workers in relation to preventive measures. Int. Arch. Occup. Environ. Health, 1998;71:53–59.PubMedCrossRefGoogle Scholar
  224. Sryseth V, Kongerud J, Aalen OO, Botten G, Boe J. Bronchial responsiveness decreases in relocated aluminum potroom workers compared with workers who continue their potroom exposure. Int. Arch. Occup. Environ. Health, 1995;67:53–57.CrossRefGoogle Scholar
  225. Stocks P. On the relations between atmospheric pollution in urban and rural localities and mortality from cancer, bronchitis, pneumonia, with particular reference to 3,4-benzopyrene, beryllium, molybdenum, vanadium, and arsenic. Br. J. Cancer, 1960;14:397–418.PubMedCrossRefGoogle Scholar
  226. Stokinger HE. “The Metals: Manganese.” In Patty’s Industrial Hygiene and Toxicology,3 rd Edition, G Clayton, F Clayton, eds. New York: Wiley and Sons, 1981, pp. 1749–1769.Google Scholar
  227. Stone CJ, McLaurin DA, Steinhagen WH, Cavender FL, Haseman JK. Tissue deposition patters after chronic inhalation exposures of rats and guinea pigs to aluminum chlorhydrate. Toxicol. Appl. Pharmacol., 1979;49:71–76.Google Scholar
  228. Sugiura Y, Kuwahara J, Suzuki T. DNA interaction and nucleotide sequence cleavage of copperstreptonigrin. Biochem. Biophys. Acta, 1984;782:254–261.CrossRefGoogle Scholar
  229. Sugiura Y, Takita T, Umezawa H. Bleomycin antibiotics: Metal complexes and their biological action. Metal Ions Biol. Syst., 1985;19:81–108.Google Scholar
  230. Suzuki Y, Fujii N, Yano H, Ohkita T, Ichikawa A, Nishiyama K. Effects of the inhalation of manganese dioxide dust on monkey lungs. Tokushima J. Exp. Med., 1978;25:119–125.Google Scholar
  231. Swarup G, Cohen S, Garbers DL. Inhibition of membrane phosphotyrosyl-protein phosphatase activity by vanadate. Biochem. Biophys. Res. Commun., 1982;107:1104–1109.Google Scholar
  232. Ter Haar GL, Griffing ME, Brandt M, Oberding DG, Kapron M. Methylcyclopentadienyl manganese tricarbonyl as an antiknock: Composition and fate of manganese exhaust products. J. Air Pollut. Control Assoc., 1975;25:858–860.CrossRefGoogle Scholar
  233. Thurston G, Spengler J. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ., 1985;19:9–25.CrossRefGoogle Scholar
  234. Tipton IH, Shafer JJ. Statistical analysis of lung trace element levels. Arch. Environ. Health, 1964;8:56–67.Google Scholar
  235. Tokudome S, Kuratsune M., A cohort study on mortality from cancer and other causes among workers at a metal refinery. Int. J. Cancer, 1976;17:310–317.PubMedCrossRefGoogle Scholar
  236. Tornling G, Blaschke E, Eklund A. Long-term effects of alumina on components of bronchoalveolar lavage fluid from rats. Br. J. Ind. Med., 1993;50:172–175.PubMedGoogle Scholar
  237. Torossian K, Freedman D, Fantus I.G. Vanadate downregulates cell surface insulin and growth hormone receptor and inhibits insulin receptor degradation in cultured human lymphocytes. J. Biol. Chem., 1988;263:9353–9359.PubMedGoogle Scholar
  238. Trudel S, Paquet MR, Ginstein S. Mechanism of vanadate-induced activation of tyrosine phosphorylation and of the respiratory burst in HL60 cells. Biochem. J., 1986;276:611–619.Google Scholar
  239. Tsuchiyama F, Hisanaga N, Shibata E, Aoki T, Takagi H, Ando T, Takeuchi Y. Pulmonary metal distribution in urban dwellers. Int. Arch. Occup. Environ. Health, 1997;70:77–84.PubMedCrossRefGoogle Scholar
  240. Ulrich CE, Rinehart W, Busey W, Dorato MA. Evaluation of the chronic inhalation toxicity of a manganese oxide aerosol. II. - Clinical observations, hematology, clinical chemistry, and histopathology. Am. Ind. Hyg. Assoc. J., 1979;40:322–329.PubMedCrossRefGoogle Scholar
  241. Utter MF. The biochemistry of manganese. Med. Clin. N. Amer., 1976;60:713–727.Google Scholar
  242. Vaddi K, Wei Cl. Effect of ammonium:netavanadate on the mouse peritoneal macrophage lysosomal enzymes. J. Toxicol. Environ. Health, 1991a;33:65–78.CrossRefGoogle Scholar
  243. Vaddi K, Wei CI. Modulation of Fc receptor expression and function in mouse peritoneal macrophages by ammonium metavanadate. Int. J. Immunopharmacol., 1991b;13:1167–1176.CrossRefGoogle Scholar
  244. Vaddi K, Wei CI. Modulation of macrophage activation by ammonium metavanadate. J. Toxicol. Environ. Health, 1996;49:631–645.PubMedCrossRefGoogle Scholar
  245. van Netten C, Teschke KE, Souter F. Occupational exposure to elemental constituents in fingerprint powders. Arch. Environ. Health, 1990;45:123–127.Google Scholar
  246. Villar TG. Vineyard sprayer’s lung: Clinical aspects. Am. Rev. Respir. Dis., 1974;110:545–555.PubMedGoogle Scholar
  247. Vyas D, Chandra RK. Thymic factor activity, lymphocyte stimulation response, and antibody producing cell in copper deficiency. Nutr. Res., 1983;3:343–349.CrossRefGoogle Scholar
  248. Wang E, Choppin PW. Effect of vanadate on intracellular distribution and function of 10 nm microfilaments. Proc. Natl. Acad. Sci. USA, 1981;78:2363–2367.PubMedCrossRefGoogle Scholar
  249. Wang R, Wang C, Feng Z, Luo Y. Investigation on the effect of selenium on T-lymphocyte proliferation and its mechanisms. J. Tongji Med. Univ., 1992;12:33–38.PubMedCrossRefGoogle Scholar
  250. Warshawsky D, Reilman R, Cheu J, Radike M, Rice C. Influence of particle dose on the cytotoxicity of hamster and rat pulmonary alveolar macrophage in vitro. J. Toxicol. Environ. Health, 1994;42:407–421.PubMedCrossRefGoogle Scholar
  251. Waters MD, Gardner DE, Aranyi C, Coffin DL. Metal toxicity for rabbit alveolar macrophages in vitro. Environ. Res., 1975;9:32–47.Google Scholar
  252. Waters MD, Gardner DE, Coffin DL. Cytotoxic effects of vanadium on rabbit alveolar macrophages in vitro. Toxicol. Appl. Pharmacol., 1974;28, 253–263.Google Scholar
  253. Watson J, Chow J, Lu Z, Fujitas E, Lowenthal D, Lawson D. Chemical mass balance source appointment of PM10 during the Southern California air quality study. Aerosol. Sci. Technol., 1994;21:1–36.Google Scholar
  254. Weir D, Robertson A, Jones S, Burge P. Occupational asthma due to soft corrosive soldering fluxes containing zinc chloride and ammonium chloride. Thorax, 1989;44:220–223.PubMedCrossRefGoogle Scholar
  255. Weissman SH, Cuddihy RG, Medinsky MA. Absorption, distribution, and retention of inhaled selenious acid and selenium metal aerosols in Beagle dogs. Toxicol. Appl. Pharmacol., 1983;67:331–337.Google Scholar
  256. White LR, Steinegger AF, Schlatter C. Pulmonary response following intratracheal instillation of potroom dust from an aluminum reduction plant into rat lung. Environ. Res., 1987;42:534–545.Google Scholar
  257. WHO: World Health Organization. Selenium. Environmnetal Health Criteria #58. Geneva: World Health Organization, 1987.Google Scholar
  258. WHO: World Health Organization. Vanadium. Environmental Health Criteria No. 81. Geneva: World Health Organization, 1988.Google Scholar
  259. Wilhemsen CL. An immunohematological study of chronic copper toxicity in sheep. Cornell Vet., 1979;69:225–232.Google Scholar
  260. Zelikoff JT, Cohen MD. “Immunotoxicity of Inorganic Metal Compounds.” In Experimental lmmunotoxicology, RJ Smialowicz, MP Holsapple, eds. Boca Raton, FL: CRC Press, Inc., 1995, pp. 189–228.Google Scholar
  261. Zoller WH, Reamer DC. “Selenium in the Atmosphere.” In Proceedings of the Symposium on Selenium-Tellurium in the Environment, Pittsburgh: Industrial Health Foundation, 1976, pp. 54–66.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Mitchell D. Cohen
    • 1
  1. 1.Department of Environmental MedicineNew York University School of MedicineTuxedoUSA

Personalised recommendations