Advertisement

Molecular Evolution of Corona-And Toroviruses

  • Marian C. Horzinek
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 473)

Abstract

Coronaviruses belong to the newly established Nidovirales—the second order (in addition to the Mononegavirales) in animal virus taxonomy. They comprise a group of enveloped, positive-stranded RNA viruses infecting mammals and birds. The order consists of the bigeneric family Coronaviridae, to which the genera Coronavirus and Torovirus have been assigned, and the monogeneric family Arteriviridae (Murphy et al., 1995).

Keywords

Reverse Transcriptase Polymerase Chain Reaction Infectious Bronchitis Virus Mouse Hepatitis Virus Feline Infectious Peritonitis Feline Infectious Peritonitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barlough, J.E., Stoddart, C.A., Sorresso, G.P., Jacobson, R.H., and Scott, F.W. (1984). Experimental inoculation of cats with canine coronavirus and subsequent challenge with feline infectious peritonitis virus. Lab Anim Sci 34, 592–597.PubMedGoogle Scholar
  2. Beards, G.M., Brown, D.W., Green, J., and Flewett, T.H. (1986). Preliminary characterisation of torovirus-like particles of humans: comparison with Berne virus of horses and Breda virus of calves. J Med Virol 20, 67–78.PubMedCrossRefGoogle Scholar
  3. Beards, G.M., Hall, C., Green, I, Flewett, T.H., Lamouliatte, E, and Du Pasquier, P. (1984). An enveloped virus in stools of children and adults with gastroenteritis that resembles the Breda virus of calves. Lancet 1, 1050–1052.PubMedCrossRefGoogle Scholar
  4. Brian, D.A., Hogue, B.G., and Kienzle, T.E. (1995). The coronavirus hemagglutinin esterase glycoprotein. In: Siddell, S.G. (ed.) The Coronaviridae Plenum Press, New York, pp. 165–179.Google Scholar
  5. Brown, D.W., Beards, G.M., and Flewett, T.H. (1987). Detection of Breda virus antigen and antibody in humans and animals by enzyme immunoassay. J Clin Microbiol 25, 637–6340.PubMedGoogle Scholar
  6. Brown, D.W., Selvakumar, R., Daniel, D.J., and Mathan, V.I. (1988). Prevalence of neutralising antibodies to Berne virus in animals and humans in Vellore, South India. Brief report. Arch Virol 98, 267–269.PubMedCrossRefGoogle Scholar
  7. Cavanagh, D. (1995). The coronavirus surface glycoprotein. In: The Coronaviridae (Siddell, S.G. Ed.) pp. 293–309. Plenum Press, New York, pp. 73-113Google Scholar
  8. Chao, L. (1990). Fitness of RNA virus decreased by Muller’s ratchet [see comments]. Nature 348, 454–455.PubMedCrossRefGoogle Scholar
  9. Cornelissen, L.A., Wierda, CM., van der Meer, F.J., Herrewegh, A.A., Horzinek, M.C., Egberink, H.F., and de Groot, R.J. (1997). Hemagglutinin-esterase, a novel structural protein of torovirus. J Virol 71, 5277–5286.PubMedGoogle Scholar
  10. Crouch, C.F., Bielefeldt Ohmann, H., Watts, T.C., and Babiuk, L.A. (1985). Chronic shedding of bovine enteric coronavirus antigen-antibody complexes by clinically normal cows. J Gen Virol 66, 1489–1500.PubMedCrossRefGoogle Scholar
  11. de Vries, A.A.E, Horzinek, M.C., Rottier, P.J.M., and de Groot, R.J. (1997). The genome organisation of the Nidovirales: similarities and differences among arteri-, toro-, and coronaviruses. Sem Virol 8, 33–48.CrossRefGoogle Scholar
  12. Duckmanton, L., Luan, B., Devenish, J., Tellier, R., and Petric, M. (1997). Characterization of torovirus from human fecal specimens. Virology 239, 158–168.PubMedCrossRefGoogle Scholar
  13. Gagneten, S., Gout, O., Dubois-Dalcq, M., Rottier, P., Rossen, J., and Holmes, K.V. (1995). Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J Virol 69, 889–895.PubMedGoogle Scholar
  14. Goldbach, R. and Wellink, J. (1988). Evolution of plus-strand RNA viruses. Intervirology 29, 260–267.PubMedGoogle Scholar
  15. Groot, R.J. de and Horzinek, M.C. (1995). Feline infectious peritonitis. In: The Coronaviridae (Siddell, S.G. Ed.) pp. 293–309. Plenum Press, New York.Google Scholar
  16. Haagmans, B.L., Egberink, H.F., and Horzinek, M.C. (1996). Apoptosis and T-cell depletion during feline infectious peritonitis. J Virol 70, 8977–8983.PubMedGoogle Scholar
  17. Herrewegh, A.A., de Groot, R.J., Cepica, A., Egberink, H.F., Horzinek, M.C, and Rottier, P.J. (1995). Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR. J Clin Microbiol 33, 684–689.PubMedGoogle Scholar
  18. Herrewegh, A.A., Mahler, M., Hedrich, HJ., Haagmans, B.L., Egberink, H.F., Horzinek, M.C., Rottier, P.J., and de Groot, R.J. (1997). Persistence and evolution of feline coronavirus in a closed cat-breeding colony. Virology 234, 349–363.PubMedCrossRefGoogle Scholar
  19. Herrler, G., Durkop, I., Becht, H., and Klenk, H.D. (1988). The glycoprotein of influenza C. virus is the hemagglutinin, esterase, and fusion factor. J. Gen Virol 69, 839–846.PubMedCrossRefGoogle Scholar
  20. Horzinek, M.C, Ederveen, I, Kaeffer, B., de Boer, D., and Weiss, M. (1986). The peplomers of Berne virus. J Gen Virol 67, 2475–2483.PubMedCrossRefGoogle Scholar
  21. Jacobse-Geels, H.E., Daha, M.R., and Horzinek, M.C. (1980). Isolation and characterization of feline C3 and evidence for the immune complex pathogenesis of feline infectious peritonitis. J Immunol 125, 1606–1610.PubMedGoogle Scholar
  22. Jacobse-Geels, H.E., Daha, M.R., and Horzinek, M.C (1982). Antibody, immune complexes, and complement activity fluctuations in kittens with experimentally induced feline infectious peritonitis. Am J Vet Res 43, 666–670.PubMedGoogle Scholar
  23. Jamieson, F.B., Wang, E.E., Bain, C., Good, J., Duckmanton, L., and Petric, M. (1998). Human torovirus: a new nosocomial gastrointestinal pathogen. J Infect Dis 178,1263–1269.PubMedCrossRefGoogle Scholar
  24. Koopmans, M. and Horzinek, M.C. (1994). Toroviruses of animals and humans: a review. Adv Virus Res 43, 233–273.PubMedCrossRefGoogle Scholar
  25. Koopmans, M., Petric, M., Glass, R.I., and Monroe, S.S. (1993). Enzyme-linked immunosorbent assay reactivity of torovirus-like particles in fecal specimens from humans with diarrhea. J-Clin-Microbiol 31, 2738–2744 issn: 0095-1137.PubMedGoogle Scholar
  26. Koopmans, M.P., Goosen, E.S., Lima, A.A., McAuliffe, LT., Nataro, J.P., Barrett, L.J., Glass, R.I., and Guerrant, R.L. (1997). Association of torovirus with acute and persistent diarrhea in children. Pediatr Infect Dis J 16, 504–507.PubMedCrossRefGoogle Scholar
  27. Krishnan, T. and Naik, T.N. (1997). Electronmicroscopic evidence of torovirus like particles in children with diarrhoea. Indian J Med Res 105, 108–110.PubMedGoogle Scholar
  28. Kroneman, A., Cornelissen, L.A., Horzinek, M.C, de Groot, R.J., and Egberink, H.F. (1998). Identification and characterization of a porcine torovirus. J Virol 72, 3507–35011.PubMedGoogle Scholar
  29. Lacombe, D., Lamouliatte, F., Billeaud, C., and Sandier, B. (1988). [Breda virus and hemorrhagic enteropathy. Reminder apropos of 1 case (letter)]. Arch Fr Pediatr 45, 442.PubMedGoogle Scholar
  30. Lai, M.M. (1992). Genetic recombination in RNA viruses. Curr Top Microbiol Immunol 176, 21–32.PubMedCrossRefGoogle Scholar
  31. Liao, C.L. and Lai, M.M. (1992). RNA recombination in a coronavirus: recombination between viral genomic RNA and transfected RNA fragments. J Virol 66, 6117–6124.PubMedGoogle Scholar
  32. Luytjes, W (1995). Coronavirus gene expression: genome organization and protein synthesis. In: Siddell, S.G. (ed.) The Coronaviridae Plenum Press, New York, pp. 33–54.Google Scholar
  33. Luytjes, W., Bredenbeek, P.J., Noten, A.F., Horzinek, M.C., and Spaan, W.J. (1988). Sequence of mouse hepatitis virus A59 mRNA 2: indications for RNA recombination between coronaviruses and influenza C virus. Virology 166, 415–422.PubMedCrossRefGoogle Scholar
  34. Mantle, M. and Allen, A. (1989). Gastrointestinal mucus In: Davidson, J.S. (ed.) Gastrointestinal secretion. Butterworth and Co. Ltd., London, pp. 209–22Google Scholar
  35. McArdle, F., Bennett, M., Gaskell, R.M., Tennant, B., Kelly, D.F, and Gaskell, C.J. (1990). Canine coronavirus infection in cats; a possible role in feline infectious peritonitis. Adv Exp Med Biol 276, 475–479.PubMedCrossRefGoogle Scholar
  36. McArdle, F., Bennett, M., Gaskell, R.M., Tennant, B., Kelly, D.F, and Gaskell, C.J. (1992). Induction and enhancement of feline infectious peritonitis by canine coronavirus. Am J Vet Res 53, 1500–1506.PubMedGoogle Scholar
  37. Motokawa, K., Hohdatsu, T., Aizawa, C., Koyama, H., and Hashimoto, H. (1995). Molecular cloning and sequence determination of the peplomer protein gene of feline infectious peritonitis virus type I. Arch Virol 140, 469–480.PubMedCrossRefGoogle Scholar
  38. Motokawa, K., Hohdatsu, T., Hashimoto, H., and Koyama, H. (1996). Comparison of the amino acid sequence and phylogenetic analysis of the peplomer, integral membrane and nucleocapsid proteins of feline, canine and porcine coronaviruses. Microbiol Immunol 40, 425–433.PubMedGoogle Scholar
  39. Murphy, F.A., Fauquet, C.M., Bishop, D.H.L., Ghabrial, S.A., Jarvis, A.W., Martelli, G.P., Mayo, M.A., and Summers, M.D. (1995). Virus Taxonomy. VIth Reoprt of the ICTV. Springer Verlag Wien New York.Google Scholar
  40. Parker, M.D., Cox, G.J., Deregt, D., Fitzpatrick, D.R., and Babiuk, L.A. (1989). Cloning and in vitro expression of the gene for the E3 hemagglutinin glycoprotein of bovine coronavirus. J Gen Virol 70, 155–164.PubMedCrossRefGoogle Scholar
  41. Pedersen, N.C. (1976a). Morphologic and physical characteristics of feline infectious peritonitis virus and its growth in autochthonous peritoneal cell cultures. Am J Vet Res 37, 567–572.PubMedGoogle Scholar
  42. Pedersen, N.C. (1976b). Serologic studies of naturally occurring feline infectious peritonitis. Am J Vet Res 37, 1449–1453.PubMedGoogle Scholar
  43. Pedersen, N.C. (1987). Virologic and immunologie aspects of feline infectious peritonitis virus infection. Adv Exp Med Biol 218, 529–550.PubMedCrossRefGoogle Scholar
  44. Pedersen, N.C., Boyle, J.F., and Floyd, K. (1981). Infection studies in kittens utilizing feline infectious peritonitis virus propagated in cell culture. Am J Vet Res 42, 363–367.PubMedGoogle Scholar
  45. Pedersen, N.C., Black, J.W., Boyle, J.F., Evermann, J.F., McKeirnan, A.J., and Ott, R.L. (1984). Molecular Biology and Pathogenesis of Coronaviruses (Rottier, P.J.M., Zeijst, B.A.M., Spaan, W.J.M., and Horzinek, M.C. Eds.) Plenum Press, New York, 365–380.CrossRefGoogle Scholar
  46. Pedersen, N.C., Evermann, J.F., McKeirnan, A.J., and Ott, R.L. (1984). Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683. Am J Vet Res 45, 2580–2585.PubMedGoogle Scholar
  47. Penrith, M.L. and Gerdes, G.H. (1992). Breda virus-like particles in pigs in South Africa [letter]. J S Afr Vet Assoc 63, 102.PubMedGoogle Scholar
  48. Plagemann, P.G.W. and Moennig, V. (1992). Lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus: a new group of positive-strand RNA viruses. Adv Virus Res 4, 99–192.CrossRefGoogle Scholar
  49. Poland, A.M., Vennema, H., Foley, J.E., and Pedersen, N.C. (1996). Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J Clin Microbiol 34, 3180–3184.PubMedGoogle Scholar
  50. Risco, C., Anton, I.M., Enjuanes, L., and Carrascosa, J.L. (1996). The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol 70, 4773–4777.PubMedGoogle Scholar
  51. Scott, A.C., Chaplin, M.J., Stack, M.J., and Lund, L.J. (1987). Porcine torovirus? [letter]. Vet Rec 120, 583.PubMedCrossRefGoogle Scholar
  52. Snijder, E.J. and Horzinek, M.C. (1993). Toroviruses: replication, evolution and comparison with other members of the coronavirus-like superfamily. J-Gen-Virol 74, 2305–2316 issn: 0022-1317.PubMedCrossRefGoogle Scholar
  53. Snijder, E.J. and Horzinek, M.C. (1995). The molecular biology of toroviruses. In: Siddell, S.G. (ed.) The Coronaviridae Plenum Press, New York, pp. 219–238.Google Scholar
  54. Snijder, E.J., den Boon, J.A., Horzinek, M.C., and Spaan, W.J. (1991). Comparison of the genome organization of toro-and coronaviruses: evidence for two nonhomologous RNA recombination events during Berne virus evolution. Virology 180, 448–452.PubMedCrossRefGoogle Scholar
  55. Stoddart, C.A., Barlough, J.E., Baldwin, C.A., and Scott, F.W. (1988). Attempted immunisation of cats against feline infectious peritonitis using canine coronavirus. Res Vet Sci 45, 383–388.PubMedGoogle Scholar
  56. Stoddart, C.A. and Scott, F.W. (1988). Isolation and identification of feline peritoneal macrophages for in vitro studies of coronavirus-macrophage interactions. J Leukoc Biol 44, 319–328.PubMedGoogle Scholar
  57. Stoddart, C.A. and Scott, F.W. (1989). Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence. J Virol 63, 436–440.PubMedGoogle Scholar
  58. Strauss, E.G. and Strauss, J.H. (1991). RNA viruses: genome structure and evolution. Curr Opin Genet Dev 1, 485–493.PubMedCrossRefGoogle Scholar
  59. Strauss, J.H. and Strauss, E.G. (1988). Evolution of RNA viruses. Annu Rev Microbiol 42, 657–683.PubMedCrossRefGoogle Scholar
  60. Van Kruiningen, H.J., Colombel, J.F., Cartun, R.W., Whitlock, R.H., Koopmans, M., Kangro, H.O., Hoogkamp Korstanje, J.A., Lecomte Houcke, M., Devred, M., Paris, J.C., and et al. (1993). An in-depth study of Crohn’s disease in two French families [see comments]. Gastroenterology 104, 351–360.PubMedGoogle Scholar
  61. Vennema, H., Rossen, J.W., Wesseling, J., Horzinek, M.C, and Rottier, P.J. (1993). Genomic organization and expression of the 3′ end of the canine and feline enteric coronaviruses. Adv Exp Med Biol 342, 11–16.PubMedCrossRefGoogle Scholar
  62. Vennema, H., Poland A., Floyd Hawkins K., and Pedersen N.C. (1995). A comparison of the genomes of FECVs and FIPVs and what they tell us about the relationships between feline coronaviruses and their evolution. Feline Pract 23, 40–44.Google Scholar
  63. Vlasak, R., Krystal, M., Nacht, M., and Palese, P. (1987). The influenza C. virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virology 160, 419–425.PubMedCrossRefGoogle Scholar
  64. Vlasak, R., Luytjes, W., Spaan, W., and Palese, P. (1988). Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C. viruses. Proc Natl Acad Sci U S A 85, 4526–4529.PubMedCrossRefGoogle Scholar
  65. Weiss, M., Steck, F., and Horzinek, M.C. (1983). Purification and partial characterization of a new enveloped RNA virus (Berne virus). J Gen Virol Reading: Society for General Microbiology Sept 64, 1849–1858.Google Scholar
  66. Weiss, M., Steck, F., Kaderli, R., and Horzinek, M.C. (1984). Antibodies to Berne virus in horses and other animals. Vet Microbiol 9, 523–531.PubMedCrossRefGoogle Scholar
  67. Woode, G.N., Reed, D.E., Runnels, P.L., Herrig, M.A., and Hill, H.T. (1982). Studies with an unclassified virus isolated from diarrhoeic calves. Veterinary Microbiology 7, 221–240.PubMedCrossRefGoogle Scholar
  68. Woode, G.N. (1987). Breda and Breda-like viruses: diagnosis, pathology, and epidemiology. Ciba Found Symp 128, 175–191.PubMedGoogle Scholar
  69. Zimmern, D. (1987). Evolution of RNA viruses. In: Holland, J.J., Domingo, E., and Ahlquist, P. (eds.) RNA Genetics, vol.2, pp. 211–240, CRC Press, Boca Raton FL.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Marian C. Horzinek
    • 1
  1. 1.Utrecht UniversityThe Netherlands

Personalised recommendations