Interference with Virus and Bacteria Replication by the Tissue Specific Expression of Antibodies and Interfering Molecules

  • L. Enjuanes
  • I. Sola
  • A. Izeta
  • J. M. Sánchez-Morgado
  • J. M. González
  • S. Alonso
  • D. Escors
  • C. M. Sánchez
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 473)


Historically, protection against virus infections has relied on the use of vaccines, but the induction of an immune response requires several days and in certain situations, like in newborn animals that may be infected at birth and die in a few days, there is not sufficient time to elicit a protective immune response. Immediate protection in new born could be provided either by vectors that express virus-interfering molecules in a tissue specific form, or by the production of animals expressing resistance to virus replication. The mucosal surface is the largest body surface susceptible to virus infection that can serve for virus entry. Then, it is of high interest to develop strategies to prevent infections of these areas. Virus growth can be interfered intracellularly, extracellularly or both. The antibodies neutralize virus intra- and extracellularly and their molecular biology is well known. In addition, antibodies efficiently neutralize viruses in the mucosal areas. The autonomy of antibody molecules in virus neutralization makes them functional in cells different from those that produce the antibodies and in the extracellular medium. These properties have identified antibodies as very useful molecules to be expressed by vectors or in transgenic animals to provide resistance to virus infection. A similar role could be played by antimicrobial peptides in the case of bacteria. Intracellular interference with virus growth (intracellular immunity) can be mediated by molecules of very different nature: (i) full length or single chain antibodies; (ii) mutant viral proteins that strongly interfere with the replication of the wild type virus (dominant-negative mutants); (iii) antisense RNA and ribozyme sequences; and (iv) the product of antiviral genes such as the Mx proteins. All these molecules inhibiting virus replication may be used to obtain transgenic animals with resistance to viral infection built in their genomes.


Transgenic Mouse Antimicrobial Peptide Long Terminal Repeat Transgenic Animal Matrix Attachment Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmad, I., W.R. Perkins, D.M. Lupan, M.E. Selsted, and A.S. Janoff. 1995. Liposomal entrapment of the neu-trophil-derived peptide indolicidin endows it with in vivo anti-fungal activity. Biochi. Biophy. Acta. 1237:109–114.CrossRefGoogle Scholar
  2. Anton, I.M., C. Suñé, R.H. Meloen, F. Borrás-Cuesta, and L. Enjuanes. 1995. A transmissible gastroenteritis coronavirus nucleoprotein epitope elicits T helper cells that collaborate in the in vitro antibody synthesis to the three major structural viral proteins. Virology. 212:746–751.PubMedCrossRefGoogle Scholar
  3. Baghian, A., J. Jaynes, F. Enright, and K.G. Kousolas. 1997. An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-I (HSV-l)-induced cell fusion and virus spread. Peptides. 18:177–183.PubMedCrossRefGoogle Scholar
  4. Ballesteros, M.L., C.M. Sanchez, and L. Enjuanes. 1997. Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology. 227:378–388.PubMedCrossRefGoogle Scholar
  5. Bazzo, R., M.J. Tappin, A. Pastore, T.S. Harvey, J.A. Carver, and I.D. Campbell. 1988. The structure of melittin. A 1H-NMR study in methanol. Eur. J. Biochem. 173:139–146.PubMedCrossRefGoogle Scholar
  6. Bevins, C.L. and M. Zasloff. 1990. Peptides from frog skin. Annu. Rev. Bioch. 59:395–414.CrossRefGoogle Scholar
  7. Biocca, S. and A. Cattaneo. 1995. Intracellular immunization: antibody targeting to subcellular compartments. Trends Cell Biol. 5:248–252.PubMedCrossRefGoogle Scholar
  8. Biocca, S., M.S. Neuberger, and A. Cattaneo. 1990. Expression and targeting of intracellular antibodies in mammalian cells. EMBO J. 9:101–108.PubMedGoogle Scholar
  9. Boman, H.G. 1991. Antibacterial peptides: key components needed in immunity. Cell. 65:205–207.PubMedCrossRefGoogle Scholar
  10. Bonifer, C., M. Vidal, F. Grosveld, and A.E. Sippel. 1990. Tissue specific and protein position independent expression of the complete gene domain for chicken lysozyme in transgenic mice. EMBO J. 9:2843–2848.PubMedGoogle Scholar
  11. Brem, G., B. Brenig, H.M. Goodman, R.C. Seiden, F. Graf, B. Kruff, K. Springman, J. Hondele, J. Meyer, E.-L. Winnaker, and H. Krausslich. 1985. Production of transgenic mice, rabbits, and pigs by micro-injection into pronuclei. Zuchthygiene. 20:251–252.CrossRefGoogle Scholar
  12. Brem, G. and M. Muller. 1994. Large transgenic animals. In Animals with novel genes. N. Maclean, editor. Cambridge University Press, Cambridge. 179–244.Google Scholar
  13. Brim, T.A., J.L. VanCott, J.K. Lunney, and L.J. Saif. 1994. Lymphocyte proliferation responses of pigs inoculated with transmissible gastroenteritis virus or porcine respiratory coronavirus. Am. J. Vet. Res. 55:494–501.PubMedGoogle Scholar
  14. Castilla, J., B. Pintado, I. Sola, J.M. Sánchez-Morgado, and L. Enjuanes. 1998. Engineering passive immunity in transgenic mice secreting virus-neutralizing antibodies in milk. Nature Biotech. 16:349–354.CrossRefGoogle Scholar
  15. Castilla, J., I. Sola, and L. Enjuanes. 1997. Interference of coronavirus infection by expression of immunoglob-ulin G (IgG) or IgA virus-neutralizing antibodies. J. Virol. 71:5251–5258.PubMedGoogle Scholar
  16. Chen, S.Y., J. Bagley, and W.A. Marasco. 1994. Intracellular antibodies as a new class of therapeutic molecules for gene therapy. Human Gene Therapy. 5:595–601.PubMedCrossRefGoogle Scholar
  17. Delmas, B., D. Rasschaert, M. Godet, J. Gelfi, and H. Laude. 1990. Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S.J. Gen. Virol. 71:1313–1323.CrossRefGoogle Scholar
  18. Diamond, G., M. Zasloff, H. Eck, M. Brasseur, W.L. Maloy, and C.L. Bevins. 1991. Trachéal antimicrobial peptide, a cysteine-rich peptide from mammalian trachéal mucosa: peptide isolation and cloning of a cDNA. Proc. Natl. Acad. Sci. USA. 88:3952–3956.PubMedCrossRefGoogle Scholar
  19. Dobrovolsky, V.N., O.V. Lagutin, T.V. Vinogradova, I.S. Frolova, V.P. Kuznetsov, and O.A. Larionov. 1993. Human gamma-interferon expression in the mammary gland of transgenic mice. FEBS Letters. 319:181–184.PubMedCrossRefGoogle Scholar
  20. Eleouet, J.F., D. Rasschaert, P. Lambert, L. Levy, P. Vende, and H. Laude. 1995. Complete sequence (20 kilo-bases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology. 206:817–822.PubMedCrossRefGoogle Scholar
  21. Enjuanes, L. and B.A.M. Van der Zeijst. 1995. Molecular basis of transmissible gastroenteritis coronavirus epidemiology. In The Coronaviridae. S.G. Siddell, editor. Plenum Press, New York. 337–376.Google Scholar
  22. Esser, A.E, R.M. Bartholomew, F.C. Jensen, and H.J. Muller-Eberhardt. 1979. Disassembly of viral membranes by complement independent channel formation. Proc. Natl. Acad. Sci. USA. 76: 5843–5847.PubMedCrossRefGoogle Scholar
  23. Frolov, I. and S. Schlesinger. 1994. Translation of Sindbis virus mRNA: effect of sequences downstream of the initiation codon. J. Virol. 68:8111–8117.PubMedGoogle Scholar
  24. Fujinami, R.S. and M.B.A. Oldstone. 1984. Antibody initiates virus persistence: immune modulation and measles virus infection. In Concepts in viral pathogenesis. A.L. Notkins and M.B.A. Oldstone, editors. Springer-Verlag, New York. 187–193.CrossRefGoogle Scholar
  25. Gebauer, F., W.A.P. Posthumus, I. Correa, C. Suné, C.M. Sánchez, C. Smerdou, J.A. Lenstra, R. Meloen, and L. Enjuanes. 1991. Residues involved in the formation of the antigenic sites of the S protein of transmissible gastroenteritis coronavirus. Virology. 183:225–238.PubMedCrossRefGoogle Scholar
  26. Guo, L., K.B. Lim, C.M. Poduje, M. Daniel, J.S. Gunn, M. Hackett, and S.I. Millers. 1998. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell. 95:189–198.PubMedCrossRefGoogle Scholar
  27. Habermann, E. and J. Jentsch. 1967. Sequence analysis of melittin from tryptic and peptic degradation products. Hoppe-Seyler’s Z. Physiol Chem. 348:37–50.PubMedCrossRefGoogle Scholar
  28. Hammer, M.C., P.J. Swart, M.-P. de Béthune, R. Pauwels, E.D. Clercq, T.H. The, and D.K.F. Meijer. 1995. Antiviral effects of plasma and milk proteins: lactoferrin shows potent activity against both guman immunodficiency virus and human cytomegalovirus replicaion in vitro. J. Infect. Dis. 172 :380–38CrossRefGoogle Scholar
  29. Hancock, R.E.W. 1997. Peptide antibiotics. Lancet. 349:418–422.PubMedCrossRefGoogle Scholar
  30. Izeta, A., C.M. Sanchez, C. Smerdou, A. Mendez, S. Alonso, M. Balasch, J. Plana-Duran, and L. Enjuanes. 1998. The spike protein of transmissible gastroenteritis coronavirus controls the tropism of pseudorecombinant virions engineered using synthetic minigenomes. Adv. Exp. Med. Biol. 440:207–21PubMedCrossRefGoogle Scholar
  31. Izeta, A., C. Smerdou, S. Alonso, Z. Penzes, A. Mendez, J. Plana-Duran, and L. Enjuanes. 1998b. Replication and packaging of transmissible gastroenteritis coronavirus derived synthetic minigenomes. J. Virol. 73: 1535–154Google Scholar
  32. Jenuwein, T., W.C. Forrester, L.A. Fernández-Herrero, G. Laible, M. Dull, and R. Grosschedl. 1997. Extension of chromatin accessibility by nuclear matrix attachment regions. Nature. 385:269–27PubMedCrossRefGoogle Scholar
  33. Jones, S.D. and W.A. Marasco. 1997. Intracellular antibodies (intrabodies): potential applications in trans-genic animal research and engineered resistance to pathogens. In Transgenic animals. Generation and use. L.M. Houdebine, editor. Harwood Academic Publishers, Amsterdam. 501–506.Google Scholar
  34. Kilian, M., J. Mestecky, and M.W. Russell. 1988. Defence mechanisms involving Fc-dependent functions of immunoglobulin A and their subversion by immunoglobulin A proteases. Microbio. Rev. 52:296–30Google Scholar
  35. Kooyman, D.L. and C.A. Pinkert. 1994. Transgenic mice expressing a chimeric anti-E. coli immunoglobulin a heavy chain gene. Transgenic Res. 3:167–17PubMedCrossRefGoogle Scholar
  36. Lai, M.M.C and D. Cavanagh. 1997. The molecular biology of coronaviruses. Adv. Virus Res. 48:1–10PubMedCrossRefGoogle Scholar
  37. Lee, C.K., R. Weltzin, G. Soman, K.M. Georgakopoulos, D.M. Houle, and T.P. Monath. 1994. Oral administration of polymeric immunoglobulin A prevents colonization with vibrio cholerae in neonatal mice. Infec. Imm. 62:887–89Google Scholar
  38. Lee, J.-Y. A. Boman, S. Chuanxin, M. Andersson, H. Jornvall, and V. Mutt. 1989. Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc. Natl. Acad. Sci. USA. 86:9159–9162.PubMedCrossRefGoogle Scholar
  39. Lee, S.H. and H.A. De Boer. 1994. Production of biomedical proteins in the milk of transgenic dairy cows: the state of the art. J. Cont. Release. 29:213–221.CrossRefGoogle Scholar
  40. Lehrer, R.I., T. Ganz, and M.E. Selsted. 1991. Defensins: endogenous antibiotic peptides of animal cells. Cell. 64:229–230.PubMedCrossRefGoogle Scholar
  41. Liljeström, P. 1994. Alphavirus expression systems. Curr. Opin. Biotech. 5:495–500.PubMedCrossRefGoogle Scholar
  42. Limonta, J., A. Pedraza, A. Rodriguez, F.M. Freyre, A.M. Barrai, F.O. Castro, R. Lleonart, C.A. Garcia, J.V. Gavilondo, and J. de la Fuente. 1995. Production of active anti-CD6 mouse-human chimeric antibodies in the milk of transgenic mice. Immunotechnology. 1:107–113.PubMedCrossRefGoogle Scholar
  43. Lo, D., V.G. Pursel, P.J. Linton, E. Sandgren, R. Behringer, C. Rexroad, R.D. Palmiter, and R.L. Brinster. 1991. Expression of mouse IgA by transgenic mice, pigs, and sheep. Eur. J. Immunol. 21:1001–1006.PubMedCrossRefGoogle Scholar
  44. Marasco, W.A., W.A. Haseltine, and S. Chen. 1993. Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type 1 gp120 single-chain antibody. Proc. Natl. Acad. Sci. USA. 90:7889–7893.PubMedCrossRefGoogle Scholar
  45. Marcos, J.F., R.N. Beachy, R.A. Houghten, S.E. Blondelle, and E. Perez-Paya. 1995. Inhibition of plant virus infection by melittin. Proc. Natl. Acad. Sci. USA. 92:12466–12469.PubMedCrossRefGoogle Scholar
  46. Mazanec, M.B., C.L. Coudret, and D.R. Fletcher. 1995. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J. Virol. 69:1339–1343.PubMedGoogle Scholar
  47. Mazanec, M.B., M.E. Lamm, D. Lyn, A. Portner, and J.G. Nedrud. 1992. Comparison of IgA versus IgG monoclonal antibodies for passive immunization of the murine respiratory tract. Virus Res. 23:1–12.PubMedCrossRefGoogle Scholar
  48. Mazanec, M.B., J.G. Nedrud, C.S. Kaetzel, and M.E. Lamm. 1993. A three-tiered view of the role of IgA in mucosal defense. Immunol. Today. 14:430–434.PubMedCrossRefGoogle Scholar
  49. Mendez, A., C. Smerdou, A. Izeta, F. Gebauer, and L. Enjuanes. 1996. Molecular characterization of transmissible gastroenteritis coronavirus defective interfering genomes: Packaging and heterogeneity. Virology. 217:495–507.PubMedCrossRefGoogle Scholar
  50. Mestecky, J. and J.R. McGhee. 1987. Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv. Immunol. 40:153–245.PubMedCrossRefGoogle Scholar
  51. Mhashilkar, A.M., J. Bagley, S.-Y. Chen, A.M. Szilvay, D.G. Heiland, and W.A. Marasco. 1995. Inhibition of HIV-1 tat-mediated LTR transactivation and HIV-1 infection by anti-tat single chain intrabodies. EMBO J. 14:1542–1551.PubMedGoogle Scholar
  52. Muller, M. and G. Brem. 1994. Transgenic strategies to increase disease resistance in livestock. Repr. Fert. Develop. 6:605–613.CrossRefGoogle Scholar
  53. Muller, M. and G. Brem. 1996. Intracellular, genetic or congenital immunisation—transgenic approaches to increase disease resistance of farm animals. J. Biotechnol. 44:233–242.PubMedCrossRefGoogle Scholar
  54. Muller, M., U.H. Weidle, and G. Brem. 1997. Antibody encoding transgenes-their potential use in congenital and intracellular immunisation of farm animals. In Transgenic animals. Generation and use. L.M. Houdebine, editor. Harwood Academic Publishers, Amsterdam. 495–499.Google Scholar
  55. Penzes, Z., J.M. Gonzalez, A. Izeta, M. Muntion, and L. Enjuanes. 1998. Progress towards the construction of a transmissible gastroenteritis coronavirus self-replicating RNA using a two-layer expression system. Adv. Exp. Med. Biol. 440:319–327.PubMedCrossRefGoogle Scholar
  56. Poljak, L., C. Seum, T. Mattioni, and U.K. Laemmli. 1994. SARs stimulate but do not confer position independent gene expression. Nucleic Acids Res. 22:4386–4394.PubMedCrossRefGoogle Scholar
  57. Pushko, P., M. Parker, G.V. Ludwing, N.L. Davis, R.E. Johnston, and J.F. Smith. 1997. Replication-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology. 239:389–401.PubMedCrossRefGoogle Scholar
  58. Reed, W.A., PH. Elzer, F.M. Enright, J.M. Jaynes, J.D. Morrey, and K.L. White. 1997. Interleukin 2 promoter/enhancer controlled expression of a synthetic cecropin-class lytic peptide in transgenic mice and subsequent resistance to Brucella abortus. Transgenic Res. 6:337–347PubMedCrossRefGoogle Scholar
  59. Renegar, K.B. and P.A. Small. 1991. Immunoglobulin A mediation of murine nasal anti-influenza virus immunity. J. Virol. 65:2146–2148.PubMedGoogle Scholar
  60. Richardson, J.H. and W.A. Marasco. 1995. Intracellular antibodies: development and therapeutic potential. TIBTECH. 13:306–310.CrossRefGoogle Scholar
  61. Saif, L.J. and R.D. Wesley. 1992. Transmissible gastroenteritis. In Diseases of Swine. A.D. Leman, B.E. Straw, W.L. Mengeling, S. D’Allaire, and D.J. Taylor, editors. Wolfe Publishing Ltd, Ames. Iowa. 362–386.Google Scholar
  62. Sánchez, C.M., F. Gebauer, C. Suñé, A. Méndez, J. Dopazo, and L. Enjuanes. 1992. Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology. 190:92–105.PubMedCrossRefGoogle Scholar
  63. Sánchez, CM., G. Jiménez, M.D. Laviada, I. Correa, C. Suñé, M.J. Bullido, F. Gebauer, C. Smerdou, P. Callebaut, J.M. Escribano, and L. Enjuanes. 1990. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology. 174:410–417.PubMedCrossRefGoogle Scholar
  64. Schanbacher, F.L., R.S. Talhouk, and FA. Murray. 1997. Biology and origin of bioactive peptides in milk. Lives. Prod. Sci. 50:105–123.CrossRefGoogle Scholar
  65. Smith, J.J., S.M. Travis, E.P. Greenberg, and M.J. Welsh. 1996. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell. 85:229–236.PubMedCrossRefGoogle Scholar
  66. Sola, I., J. Castilla, B. Pintado, J.M. Sánchez-Morgado, B. Whitelaw, J. Clark, and L. Enjuanes. 1998. Transgenic mice secreting coronavirus neutralizing antibodies into the milk. J. Virol. 72:3762–377PubMedGoogle Scholar
  67. Steiner, H., D. Hultmark, A. Engstrom, H. Bennich, and H.G. Boman. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 292:246–248.PubMedCrossRefGoogle Scholar
  68. Storb, U. 1987. Transgenic mice with immunoglobulin genes. Ann. Rev. Immunol. 5:151–174.CrossRefGoogle Scholar
  69. Storb, U, C. Pinkert, B. Arp, P. Engler, K. Gollahon, J. Manz, W. Brady, and R.L. Brinster. 1986. Transgenic mice with μ and κ genes encoding antiphosphorylcholine antibodies. J. Exp. Med. 164:627–641.PubMedCrossRefGoogle Scholar
  70. Suñé, C., G. Jimenez, I. Correa, M.J. Bullido, F. Gebauer, C. Smerdou, and L. Enjuanes. 1990. Mechanisms of transmissible gastroenteritis coronavirus neutralization. Virology. 177:559–569.PubMedCrossRefGoogle Scholar
  71. Terwilliger, T.C and D. Eisenberg. 1982. The structure of melittin. II. Interpretation of the stucture. J. Biol. Chem. 257:6016–6022.PubMedGoogle Scholar
  72. Torres, J.M., CM. Sánchez, C. Suñé, C. Smerdou, L. Prevec, F. Graham, and L. Enjuanes. 1995. Induction of antibodies protecting against transmissible gastroenteritis coronavirus (TGEV) by recombinant adenovirus expressing TGEV spike protein. Virology. 213:503–516.PubMedCrossRefGoogle Scholar
  73. VanCott, J.L.,T.A. Brim, J.K. Lunney, and L.J. Saif. 1994. Contribution of antibody-secreting cells induced in mucosal lymphoid tissues of pigs inoculated with respiratory or enteric strains of coronavirus to immunity against enteric coronavirus challenge. J. Immunol. 152:3980–3990.PubMedGoogle Scholar
  74. Wachinger, M., A. Kleinschmidt, D. Winder, N. von Pechmann, A. Ludvigsen, M. Neumann, R. Holle, B. Salmons, V. Erfle, and R. Brack·Werner. 1998. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J. Gen. Virol. 79:731–740.PubMedGoogle Scholar
  75. Wachinger, M., T. Saermark, and V. Erfle. 1992. Influence of amphipathic peptides on the HIV-1 production in persistently infected T-lymphoma cells. FEBS Letters. 309:235–341.PubMedCrossRefGoogle Scholar
  76. Wade, D., D. Andreu, S.A. Mitchell, A.M.V. Silveira, A. Boman, H.G. Boman, and R.B. Merrifield. 1992. Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Inter. J. Pept. Prot. Res. 40:429–436.CrossRefGoogle Scholar
  77. Weidle, U.H., H. Lenz, and G. Brem. 1991. Genes encoding a mouse monoclonal antibody are expressed in transgenic mice, rabbits, and pigs. Gene. 98:185–191.PubMedCrossRefGoogle Scholar
  78. Yarus, S., J.M. Rosen, A.M. Cole, and G. Diamond. 1996. Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice. Proc. Natl. Acad. Sci. USA. 93:14118–14121.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • L. Enjuanes
    • 1
  • I. Sola
    • 1
  • A. Izeta
    • 1
  • J. M. Sánchez-Morgado
    • 1
  • J. M. González
    • 1
  • S. Alonso
    • 1
  • D. Escors
    • 1
  • C. M. Sánchez
    • 1
  1. 1.Department of Molecular and Cell Biology CNB,CSICCampus Universidad Autonoma CantoblancoMadridSpain

Personalised recommendations