The Nonstructural Proteins of Paramyxoviruses

  • Robert A. Lamb
  • Reay G. Paterson
Part of the The Viruses book series (VIRS)


This chapter describes properties of the paramyxovirus genes and their mRNAs which encode polypeptides known as nonstructural proteins. The designation nonstructural is used here in a loose sense to describe a virus-encoded polypeptide that is synthesized in virus-infected cells but is greatly underrepresented in or absent from purified virions. In virus-infected CV1 cells the nonstructural polypeptides B, C′, and C synthesized by Sendai virus and the nonstructural cysteine-rich polypeptide V synthesized by SV5 can be identified (Fig. 1). In addition to nonstructural polypeptide V, a small hydrophobic (SH) integral membrane protein is synthesized in SV5-infected cells, but it cannot be resolved on the gel shown in Fig. 1. All these polypeptides will be discussed in detail in the ensuing sections.


Newcastle Disease Virus Measle Virus Nonstructural Protein Sendai Virus Protein Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. D., 1989, “Molecular Biology of the Cell,” 2nd ed., Garland Publishing, New York.Google Scholar
  2. Alkhatib, G., Massie, B., and Briedis, D. J., 1988, Expression of bicistronic measles virus P/C mRNA by using hybrid adenoviruses: Levels of C protein synthesized in vivo are unaffected by the presence or absence of the upstream P initiator codon, J. Virol. 62:4059–4069.PubMedGoogle Scholar
  3. Barrett, T., Shrimpton, S. B., and Russell, S. E. H., 1985, Nucleotide sequence of the entire protein coding region of canine distemper virus polymerase-associated (P) protein mRNA, Virus Res. 3:367–372.PubMedCrossRefGoogle Scholar
  4. Becerra, S. P., Rose, J. A., Hardy, M., Baroudy, B. M., and Anderson, C. W., 1985, Direct mapping of adeno-associated virus capsid proteins B and C: A possible ACG initiation codon, Proc. Natl. Acad. Sci. USA 82:7919–7923.PubMedCrossRefGoogle Scholar
  5. Bellini, W. J., Englund, G., Rozenblatt, S., Arnheiter, H. and Richardson, C. D., 1985, Measles virus P gene codes for two proteins, J. Virol. 53:908–919.PubMedGoogle Scholar
  6. Benne, R., Van Den Burg, J., Brackenhoff, J. P. J., Sloof, P., Van Boom, J. H., and Tromp, M. C., 1986, Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA, Cell 46:819–826.PubMedCrossRefGoogle Scholar
  7. Cattaneo, R., Kaelin, K., Baczko, K., and Billeter, M. A., 1989, Measles virus editing provides an additional cysteine-rich protein, Cell 56:759–764.PubMedCrossRefGoogle Scholar
  8. Chen, S.-H., Habib, G., Yang, C.-Y., Gu, Z.-W., Lee, B. R., Weng, S. A., Silberman, S. R., Cai, S.-J., Deslypere, J. P., Rosseneu, M., Gotto, Jr., A. M., Li, W.-H., and Chan, L. 1987, Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon, Science 238:363–366.PubMedCrossRefGoogle Scholar
  9. Collins, P. L., Wertz, G. W., and Hightower, L. E., 1982, Coding assignments of the five smaller mRNAs of Newcastle disease virus, J. Virol. 43:1024–1031.PubMedGoogle Scholar
  10. Curran, J. A., and Kolakofsky, D., 1987, Identification of an additional Sendai virus non-structural protein encoded by the P/C mRNA, J. Gen. Virol. 68:2515–2519.PubMedCrossRefGoogle Scholar
  11. Curran, J., and Kolakofsky, D., 1988a, Ribosomal initiation from an ACG codon in the Sendai virus P/C mRNA, EMBO J. 7:245–251.PubMedGoogle Scholar
  12. Curran, J., and Kolakofsky, D., 1988b, Scanning independent ribosomal initiation of the Sendai virus X protein, EMBO J. 7:2869–2874.PubMedGoogle Scholar
  13. Curran, J. A., Richardson, C., and Kolakofsky, D., 1986, Ribosomal initiation at alternate AUGs on the Sendai virus P/C mRNA, J. Virol. 57:684–687.PubMedGoogle Scholar
  14. Dethlefsen, L. A., and Kolakofsky, D., 1983, In vitro synthesis of the nonstructural C protein of Sendai virus, J. Virol. 46:321–324.PubMedGoogle Scholar
  15. Dowling, P. C., Giorgi, C., Roux, L., Dethlefsen, L. A., Galantowicz, M. E., Blumberg, B. M., and Kolakofsky, D., 1983, Molecular cloning of the 3′ proximal third of Sendai virus genome, Proc. Natl. Acad. Sci. USA 80:5213–5216.PubMedCrossRefGoogle Scholar
  16. Elango, N., Kovamees, J., and Norrby, E., 1989a, Sequence analysis of the mumps virus mRNA encoding the P protein, Virology 169:62–67.PubMedCrossRefGoogle Scholar
  17. Elango, N., Kovamees, J., Varsanyi, T. M., and Norrby, E., 1989b, mRNA sequence and deduced amino acid sequence of the mumps virus small hydrophobic protein gene, J. Virol. 63:1413–1415.PubMedGoogle Scholar
  18. Elliott, G. D., Afzal, M. A., Martin, S. J., and Rima, B. K., 1989, Nucleotide sequence of the matrix, fusion and putative SH protein genes of mumps virus and their deduced amino acid sequences, Virus Res. 12:61–76.PubMedCrossRefGoogle Scholar
  19. Etkind, P. R., Cross, R. K., Lamb, R. A., Merz, D. C., and Choppin, P. W., 1980, In vitro synthesis of structural and nonstructural proteins of Sendai and SV5 viruses, Virology 100:22–33.PubMedCrossRefGoogle Scholar
  20. Evans, R. A., 1988, The steroid and thyroid hormone receptor superfamily, Science 240:889–895.PubMedCrossRefGoogle Scholar
  21. Feagin, J. E., Jasmer, D. P., and Stuart, K., 1987, Developmentally regulated addition of nucleotides within the apocytochrome b transcripts in Trypanosoma brucei, Cell 49:337–345.Google Scholar
  22. Feagin, J. E., Abraham, J. M., and Stuart, K., 1988, Extensive editing of the cytochrome c oxidase III transcript in Trypanosoma brucei, Cell 53:413–422.PubMedCrossRefGoogle Scholar
  23. Frankel, A. D., and Pabo, C. O., 1988, Fingering too many proteins, Cell 53:675.PubMedCrossRefGoogle Scholar
  24. Frankel, A. D., Bredt, D. S., and Pabo, C. O., 1988, Tat protein from human immunodeficiency virus forms a metal-linked dimer, Science 240:70–73.PubMedCrossRefGoogle Scholar
  25. Galinski, M. S., Mink, M. A., Lambert, D. M., Wechsler, S. L., and Pons, M. W., 1986, Molecular cloning and sequence analysis of the human parainfluenza 3 virus mRNA encoding the P and C proteins, Virology 155:46–60.PubMedCrossRefGoogle Scholar
  26. Gilmore, R., and Blobel, G., 1985, Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants, Cell 42:939–950.CrossRefGoogle Scholar
  27. Giorgi, C., Blumberg, B. M., and Kolakofsky, D., 1983, Sendai virus contains overlapping genes expressed from a single mRNA, Cell 35:829–836.PubMedCrossRefGoogle Scholar
  28. Gupta, K. C., and Kingsbury, D. W., 1985, Translational modulation in vitro of a eukaryotic viral mRNA encoding overlapping genes: Ribosome scanning and potential roles of conformational changes in the P/C mRNA of Sendai virus, Biochem. Biophys. Res. Commun. 131:91–97.PubMedCrossRefGoogle Scholar
  29. Gupta, K. C., and Patwardhan, S., 1988, ACG, the initiator codon for Sendai virus C protein, J. Biol. Chem. 263:8553–8556.PubMedGoogle Scholar
  30. Hall, W. W., Lamb, R. A., and Choppin, P. W., 1980, The polypeptides of canine distemper virus: Synthesis in infected cells and relatedness to the polypeptides of other mobilliviruses, Virology 100:433–449.PubMedCrossRefGoogle Scholar
  31. Hamaguchi, M., Yoshida, T., Nishikawa, K., Naruse, H., and Nagai, Y., 1983, Transcriptive complex of Newcastle disease virus. I. Both L and P proteins are required to constitute an active complex, Virology 128:105–117.PubMedCrossRefGoogle Scholar
  32. Hann, S. R., King, M. W., Bentley, D. L., Anderson, C. W., and Eisenman, R. L., 1988, A non-AUG translation initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt’s lymphomas, Cell 52:185–195.PubMedCrossRefGoogle Scholar
  33. Herrler, G., and Compans, R. W., 1982, Synthesis of mumps virus polypeptides in infected vero cells, Virology 119:430–438.PubMedCrossRefGoogle Scholar
  34. Hiebert, S. W., Paterson, R. G., and Lamb, R. A., 1985a, Hemagglutinin-neuraminidase protein of the paramyxovirus simian virus 5: Nucleotide sequence of the mRNA predicts an N-terminal membrane anchor, J. Virol. 54:1–6.PubMedGoogle Scholar
  35. Hiebert, S. W., Paterson, R. G., and Lamb, R. A., 1985b, Identification and predicted sequence of a previously unrecognized small hydrophobic protein, SH, of the paramyxovirus simian virus 5, J. Virol. 55:744–751.PubMedGoogle Scholar
  36. Hiebert, S. W., Richardson, C. D., and Lamb, R. A., 1988, Cell surface expression and orientation in membranes of the 44-amino-acid SH protein of simian virus 5, J. Virol. 62:2347–2357.PubMedGoogle Scholar
  37. Jacks, T., Madhani, H. D., Masiarz, F. R., and Varmus, H. E., 1988, Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region, Cell 55:447–458.PubMedCrossRefGoogle Scholar
  38. Johansen, H., Schumperli, D., and Rosenberg, M., 1984, Affecting gene expression by altering the length and sequence of the 5′ leader, Proc. Natl. Acad. Sci. USA 81:7698–7702.PubMedCrossRefGoogle Scholar
  39. Johnston, M., and Dover, J., 1987, Mutations that inactivate a yeast transcriptional regulatory protein cluster in an evolutionary conserved DNA binding domain, Proc. Natl. Acad. Sci. USA 84:2401–2405.PubMedCrossRefGoogle Scholar
  40. Klug, A., and Rhodes, D., 1987, ‘Zinc fingers’: A novel protein motif for nucleic acid recognition, Trends Biochem. Sci. 12:464–469.CrossRefGoogle Scholar
  41. Kozak, M., 1981a, Possible role of flanking nucleotides in recognition of the AUG initiator codon by eucaryotic ribosomes, Nucleic Acids Res. 9:5233–5252.PubMedCrossRefGoogle Scholar
  42. Kozak, M., 1981b, Mechanism of mRNA recognition by eukaryotic ribosomes during initiation of protein synthesis, Curr. Top. Microbiol. Immunol. 93:81–123.PubMedCrossRefGoogle Scholar
  43. Kozak, M., 1983, Translation of insulin-related polypeptides from messenger RNAs with tandemly reiterated copies of the ribosome binding site, Cell 34:971–978.PubMedCrossRefGoogle Scholar
  44. Kozak, M., 1984, Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo, Nature 308:241–246.PubMedCrossRefGoogle Scholar
  45. Kozak, M., 1986a, Regulation of protein synthesis in virus-infected animal cells, Adv. Virus Res. 31:229–292.PubMedCrossRefGoogle Scholar
  46. Kozak, M., 1986b, Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44:283–292.PubMedCrossRefGoogle Scholar
  47. Kozak, M., 1986c, Bifunctional messenger RNAs in eukaryotes, Cell 47:481–483.PubMedCrossRefGoogle Scholar
  48. Kozak, M., 1987, An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs, Nucleic Acids Res. 15:8125–8148.PubMedCrossRefGoogle Scholar
  49. Kozak, M., 1989, The scanning model for translation: An update, J. Cell. Biol. 108:229–241.PubMedCrossRefGoogle Scholar
  50. Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157:105–132.PubMedCrossRefGoogle Scholar
  51. Lamb, R. A., 1975, The phosphorylation of Sendai virus proteins by a virus particle-associated protein kinase, J. Gen. Virol. 26:249–263.PubMedCrossRefGoogle Scholar
  52. Lamb, R. A., and Choppin, P. W., 1977a, The synthesis of Sendai virus polypeptides in infected cells. II. Intracellular distribution of polypeptides, Virology 81:371–381.PubMedCrossRefGoogle Scholar
  53. Lamb, R. A., and Choppin, P. W., 1977b, The synthesis of Sendai virus polypeptides in infected cells. III. Phosphorylation of polypeptides, Virology 81:382–397.PubMedCrossRefGoogle Scholar
  54. Lamb, R. A., and Choppin, P. W., 1978, Determination by peptide mapping of the unique polypeptides in Sendai virions and infected cells, Virology 84:469–478.PubMedCrossRefGoogle Scholar
  55. Lamb, R. A., Mahy, B. W. J., and Choppin, P. W., 1976, The synthesis of Sendai virus polypeptides in infected cells, Virology 69:116–131.PubMedCrossRefGoogle Scholar
  56. Lamb, R. A., Lai, C.-J., and Choppin, P. W., 1981, Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: Colinear and interrupted mRNAs code for overlapping proteins, Proc. Natl. Acad. Sci. USA 78:4170–4174.PubMedCrossRefGoogle Scholar
  57. Lamb, R. A., Zebedee, S. L., and Richardson, C. D., 1985, Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface, Cell 40:627–633.PubMedCrossRefGoogle Scholar
  58. Leibowitz, J. L., Perlman, S., Weinstock, G., DeVries, J. R., Budzilowicz, C., Weissemann, J. M., and Weiss, S. R., 1988, Detection of a murine coronavirus nonstructural protein encoded in a downstream open reading frame, Virology 164:156–164.PubMedCrossRefGoogle Scholar
  59. Liu, C.-C., Simonsen, C. C., and Levinson, A. D., 1984, Initiation of translation at internal AUG codons in mammalian cells, Nature 309:82–85.PubMedCrossRefGoogle Scholar
  60. Lomedico, P. T., and McAndrew, S. J., 1982, Eukaryotic ribosomes can recognize preproinsulin initiation codons irrespective of their position relative to the 5′ end of mRNA, Nature 299:221–226.PubMedCrossRefGoogle Scholar
  61. Luk, D., Sanchez, A., and Banerjee, A. K., 1986, Messenger RNA encoding the phosphoprotein (P) gene of human parainfluenza virus 3 is bicistronic, Virology 153:318–325.PubMedCrossRefGoogle Scholar
  62. McGinnes, L., McQuain, C., and Morrison, T., 1988, The P protein and the nonstructural 38K and 29K proteins of Newcastle disease virus are derived from the same open reading frame, Virology 164:256–264.PubMedCrossRefGoogle Scholar
  63. Moran, E., and Mathews, M. B., 1987, Multiple functional domains in the adenovirus E1A gene, Cell 48:177–178.PubMedCrossRefGoogle Scholar
  64. Olmsted, R. A., and Collins, P. L., 1989, The 1A protein of respiratory syncytial virus is an integral membrane protein present as multiple, structurally distinct species, J. Virol. 63:2019–2029.PubMedGoogle Scholar
  65. Paterson, R. G., and Lamb, R. A., 1987, Ability of the hydrophobic fusion-related external domain of a paramyxovirus F protein to act as a membrane anchor, Cell 48:441–452.PubMedCrossRefGoogle Scholar
  66. Paterson, R. G., and Lamb, R. A., 1990, RNA editing by G nucleotide insertion in mumps “P” gene mRNA transcripts, J. Virol. September issue.Google Scholar
  67. Paterson, R. G., Harris, T. J. R., and Lamb, R. A., 1984, Analysis and gene assignment of mRNAs of a paramyxovirus, simian virus 5, Virology 138:310–323.PubMedCrossRefGoogle Scholar
  68. Paterson, R. G., Thomas, S. M., and Lamb, R. A., 1989, Specific non-templated nucleotide addition to a simian virus 5 mRNA: Prediction of a common mechanism by which unrecognized hybrid P-cysteine-rich proteins are encoded by paramyxovirus “P” genes, In “Genetics and Pathogenicity of Negative Strand Viruses” (D. Kolakofsky and B. W J. Mahy, eds.), pp. 232–245, Elsevier, London.Google Scholar
  69. Peluso, R. W., Lamb, R. A., and Choppin, P. W, 1977, Polypeptide synthesis in simian virus 5-infected cells, J. Virol. 23:177–187.PubMedGoogle Scholar
  70. Peluso, R. W., Lamb, R. A., and Choppin, P. W., 1979, Infection with paramyxoviruses stimulates synthesis of cellular polypeptides which are also stimulated in cells transformed by Rous sarcoma virus or deprived of glucose, Proc. Natl. Acad. Sci. USA 75:6120–6124.CrossRefGoogle Scholar
  71. Portner, A., Gupta, K. C., Seyer, J. M., Beachey, E. H., and Kingsbury, D. W, 1986, Localization and characterization of Sendai virus nonstructural C and C′ proteins by antibodies against synthetic peptides, Virus Res. 6:109–121.PubMedCrossRefGoogle Scholar
  72. Powell, L. M., Wallis, S. C., Pease, R. J., Edwards, Y. H., Knott, T. J., and Scott, J., 1987, A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine, Cell 50:831–840.PubMedCrossRefGoogle Scholar
  73. Prats, H., Kaghad, M., Prats, A. C., Klagsbrun, M., Lelias, J. M., Liauzun, P., Chalow, P., Tauber, J. P., Amalric, F., Smith, J.A., and Caput, D., 1989, High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons, Proc. Natl. Acad. Sci. USA 86:1836–1840.PubMedCrossRefGoogle Scholar
  74. Randall, R. E., Young, D. F., Goswami, K. K. A., and Russell, W. C., 1987, Isolation and characterization of monoclonal antibodies to simian virus 5 and their use in revealing antigenic differences between human, canine and simian isolates, J. Gen. Virol. 68:2769–2780.PubMedCrossRefGoogle Scholar
  75. Richardson, C. D., Berkovich, A., Rosenblatt, S., and Bellini, W. J., 1985, Use of antibodies directed against synthetic peptides in identifying cDNA clones, establishing reading frames, and deducing the gene order of measles virus, J. Virol. 53:186–193.Google Scholar
  76. Rima, B. K., Robert, M. W., McAdam, W. D., and Martin, S. J., 1980, Polypeptide synthesis in mumps virus infected cells, J. Gen. Virol. 46:501–505.PubMedCrossRefGoogle Scholar
  77. Sanchez, A., and Banerjee, A. K., 1985a, Studies on human parainfluenza virus 3: Characterization of the structural proteins and in vitro synthesized proteins coded by mRNAs isolated from infected cells, Virology 143:45–54.PubMedCrossRefGoogle Scholar
  78. Sanchez, A., and Banerjee, A. K., 1985b, Cloning and gene assignment of mRNAs of human parainfluenza virus 3, Virology 147:177–186.PubMedCrossRefGoogle Scholar
  79. Sato, H., Oh-hira, M., Ishida, N., Imamura, Y., Hattori, S., and Kawakita, M., 1987, Molecular cloning and nucleotide sequence of P, M and F genes of Newcastle disease virus avirulent strain D26, Virus Res. 7:241–255.PubMedCrossRefGoogle Scholar
  80. Shaw, J. M., Feagin, J. E., Stuart, K., and Simpson, L., 1988, Editing of kinetoplastid mitochondrial mRNAs by uridine addition and deletion generates conserved amino acid sequences and AUG initiation codons, Cell 53:401–411.PubMedCrossRefGoogle Scholar
  81. Shaw, M. W., Lamb, R. A., Erikson, B. W., Briedis, D. J., and Choppin, P. W., 1982, Complete nucleotide sequence of the neuraminidase gene of influenza B virus, Proc. Natl. Acad. Sci. USA 79:6817–6821.PubMedCrossRefGoogle Scholar
  82. Shaw, M. W., Choppin, P. W., and Lamb, R. A., 1983, A previously unrecognized influenza B virus glycoprotein from a bicistronic mRNA that also encodes the viral neuraminidase, Proc. Natl. Acad. Sci. USA 80:4879–4883.PubMedCrossRefGoogle Scholar
  83. Shioda, T., Hidaka, Y., Kanda, T., Shibuta, H., Nomoto, A., and Iwasaki, K., 1983, Sequence of 3, 687 nucleotides from the 3′ end of Sendai virus genome RNA and the predicted amino acid sequences of viral NP, P and C proteins, Nucleic Acids Res. 11:7317–7330.PubMedCrossRefGoogle Scholar
  84. Spriggs, M. K., and Collins, P. L., 1986, Sequence analysis of the P and C protein genes of human parainfluenza virus type 3: Patterns of amino acid sequence homology among paramyxovirus proteins, J. Gen. Virol. 67:2705–2719.PubMedCrossRefGoogle Scholar
  85. Steck, T. L., and Yu, J., 1973, Selective solubilization of proteins from red blood cell membranes by protein perturbants, J. Supramol. Struct. 1:220–248.PubMedCrossRefGoogle Scholar
  86. Strebel, K., Klimkait, T., and Martin, M. A., 1988, A novel gene of HIV-1, vpu, and its 16-kilodalton product, Science 241:1221–1223.PubMedCrossRefGoogle Scholar
  87. Taira, H., Kanda, T, Omata, T., Shibuta, H., Kawakita, M., and Iwasaki, K., 1987, Interferon induction by transfection of Sendai virus C gene cDNA, J. Virol. 61:625–628.PubMedGoogle Scholar
  88. Takeuchi, K., Hishiyama, M., Yamada, A., and Sugiura, A., 1988, Molecular cloning and sequence analysis of the mumps virus gene encoding the P protein: Mumps virus P gene is monocistronic, J. Gen. Virol. 69:2043–2049.PubMedCrossRefGoogle Scholar
  89. Thomas, S. M., Lamb, R. A., and Paterson, R. G., 1988, Two mRNAs that differ by two non-templated nucleotides encode the amino co-terminal proteins P and V of the paramyxovirus SV5, Cell 54:891–902.PubMedCrossRefGoogle Scholar
  90. Vidal, S., Curran, J., and Kolakofsky, D., 1990, Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-coded activity, J. Virol. 64:239–246.PubMedGoogle Scholar
  91. Williams, M. A., and Lamb, R. A., 1986, Determination of the orientation of an integral membrane protein and sites of glycosylation by oligonucleotide-directed mutagenesis: Influenza B virus NB glycoprotein lacks a cleavable signal sequence and has an extracellular NH2-terminal region, Mol. Cell. Biol. 6:4317–4328.PubMedGoogle Scholar
  92. Williams, M. A., and Lamb, R. A., 1989, Effect of mutations and deletions in a bicistronic mRNA on the synthesis of influenza B virus NB and NA glycoproteins, J. Virol. 63:28–35.PubMedGoogle Scholar
  93. Zebedee, S. L., and Lamb, R. A., 1988, Influenza A virus M2 protein: Monoclonal antibody restriction of virus growth and detection of M2 in virions, J. Virol. 62:2762–2772.PubMedGoogle Scholar
  94. Zebedee, S. L., and Lamb, R. A., 1989, Growth restriction of influenza A virus by M2 protein antibody is genetically linked to the M1 protein, Proc. Natl. Acad. Sci. USA 86:1061–1065.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Robert A. Lamb
    • 1
  • Reay G. Paterson
    • 1
  1. 1.Department of Biochemistry, Molecular Biology, and Cell BiologyNorthwestern UniversityEvanstonUSA

Personalised recommendations