Advertisement

The Genetics of Paramyxoviruses

  • Craig R. Pringle
Chapter
Part of the The Viruses book series (VIRS)

Abstract

The replication of RNA viruses, though sometimes requiring integrity of the cell nucleus, with a single exception takes place in the cytoplasm of the host cell independently of DNA replication. According to taxonomic type, either the positive strand or the negative strand or both may become encapsidated in the virion. The negative-strand viruses include the nuclear hepatitis delta virus and the members of the families Arenaviridae, Bunyaviridae, Filoviridae, Orthomyxoviridae, Paramyxoviridae, and Rhabdoviridae. Hepatitis delta virus is exceptional in having a genome consisting of a single-stranded, covalently-closed, circular molecule, and although replication competent in some cells, it is dependent on hepatitis B virus for encapsidation and transmission (Wang et al., 1986; Taylor et al., 1987). The linear negative-strand RNA viruses are a diverse collection of viruses replicating in the cytoplasm. They exhibit a genome strategy whereby the noncoding RNA strand is sequestered in the extracellular virion and the positive-strand template RNA and mRNAs are generated by a virion-associated transcriptase/replicase from the complementary template strand when the infectious process is initiated.

Keywords

Respiratory Syncytial Virus Newcastle Disease Virus Measle Virus Vesicular Stomatitis Virus Canine Distemper Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abenes, G., Kida, H., and Yamagawa, R., 1986, Antigenic mapping and functional analysis of the F protein of Newcastle disease virus using monoclonal antibodies, Arch. Virol. 90:97–110.PubMedCrossRefGoogle Scholar
  2. Armen, R. C., Evermann, J. F., Truant, A. L., Laughlin, C. A., and Hallum, J. V., 1977, Temperature-sensitive mutants of measles virus produced from persistently infected HeLa cells, Arch. Virol. 53:121–132.PubMedCrossRefGoogle Scholar
  3. Baas, B. L., and Weintraub, H., 1988, An unwinding activity that covalently modifies its double-stranded RNA substrate, Cell 55:1089–1098.CrossRefGoogle Scholar
  4. Banerjee, A., 1987, The transcription complex of vesicular stomatitis virus, Cell 48:363–364.PubMedCrossRefGoogle Scholar
  5. Baybutt, H. N., and Pringle, C. R., 1987, Molecular cloning and sequencing of the F and 22K membrane protein genes of the RSS-2 strain of respiratory syncytial virus, J. Gen. Virol. 68:2789–2796.PubMedCrossRefGoogle Scholar
  6. Belshe, R. B., Richardson, L. S., Schnitzer, T. J., Prevar, D. A., Camargo, E., and Chanock, R. M., 1977, Further characterization of the complementation group B temperature-sensitive mutant of respiratory syncytial virus, J. Virol. 24:8–12.PubMedGoogle Scholar
  7. Belshe, R. B., Richardson, L. S., London, W. T, Sly, D. L., Camargo, E., Prevar, D. A., and Chanock, R. M., 1978, Evaluation of five temperature-sensitive mutants of respiratory syncytial virus in primates. II. Genetic analysis of virus recovered during infection, J. Med. Virol. 3:101–110.PubMedCrossRefGoogle Scholar
  8. Bergholz, C. M., Kiley, M. P., and Payne, F. E., 1975, Isolation and characterization of temperature-sensitive mutants of measles virus, J. Virol. 16:192–202.PubMedGoogle Scholar
  9. Blumberg, B. M., Crowley, J. C., Silverman, J. L, Menonna, J., Cook, S., and Dowling, P. C, 1988, Measles virus L protein evidences elements of ancestral RNA polymerase, Virology 164:487–497.PubMedCrossRefGoogle Scholar
  10. Bratt, M. A., and Hightower, L. E., 1977, Genetics and paragenetic phenomena of paramyxoviruses, in “Comprehensive Virology” (H. Fraenkel-Conrat and R. R. Wagner, eds.), Vol. 9, pp. 457–533, Plenum Press, New York.Google Scholar
  11. Breschkin, A. M., Haspel, M. V, and Rapp, F., 1976, Neurovirulence and induction of hydrocephalus with parental, mutant, and revertant strains of measles virus, J. Virol. 18:809–811.PubMedGoogle Scholar
  12. Breschkin, A. M., Rapp, F., and Payne, F. E., 1977, Complementation analysis of measles virus temperature-sensitive mutants, J. Virol. 21:439–441.PubMedGoogle Scholar
  13. Buckland, R., Giraudon, P., and Wild, T. F., 1988, Antigenic variation of the internal proteins of measles virus: Identification and expression of the individual epitopes in bacteria, Virus Res. (Suppl.) 2:46.CrossRefGoogle Scholar
  14. Cattaneo, R., Schmid, A., Eschle, D., Baczko, K., ter Meulen, V, and Billeter, M., 1988, Biased hypermutation and other genetic changes in defective measles viruses in human brain infections, Cell 55:255–265.PubMedCrossRefGoogle Scholar
  15. Cavanagh, D., and Barrett, T., 1988, Pneumovirus-like characteristics of the mRNA and proteins of turkey rhinotracheitis virus, Virus Res. 11:241–256.PubMedCrossRefGoogle Scholar
  16. Chambers, P., Barr, J., Pringle, C. R., and Easton, A. J. 1990, Molecular cloning of pneumonia virus of mice, J. Virol. 64:1869–1872.PubMedGoogle Scholar
  17. Chanock, R. M., 1982, Respiratory syncytial virus, in “Virus Infections of Humans; Epidemiology and Control” (A. S. Evans, ed.), pp. 471–488, Plenum Press, New York.Google Scholar
  18. Choppin, P. W., and Scheid, A., 1980, The role of viral glycoproteins in adsorption, penetration, and pathogenicity of viruses, Rev. Infect. Dis. 2:40–61.PubMedCrossRefGoogle Scholar
  19. Chui, L. W.-I., Vainionpaa, R., Marusyk, R., Salmi, A., and Norrby, E., 1986, Nuclear accumulation of measles virus nucleoprotein associated with a temperature-sensitive mutant, J. Gen. Virol. 67:2153–2162.PubMedCrossRefGoogle Scholar
  20. Coelingh, K. J., Winter, C. C., Murphy, B. R., Rice, J. M., Kimball, P. C., Olmsted, R. A., and Collins, P. L., 1986, Conserved epitopes on the hemagglutinin-neuraminidase proteins of human and bovine parainfluenza type 3 viruses: Nucleotide sequence analysis of variants selected with monoclonal antibodies, J. Virol. 60:90–96.PubMedGoogle Scholar
  21. Collins, P. L., Hightower, L. E., and Ball, L. A., 1980, Transcriptional map for Newcastle disease virus, J. Virol. 35:682–693.PubMedGoogle Scholar
  22. Collins, P. L., Huang, Y. T., and Wertz, G. W, 1984, Identification of a tenth mRNA of respiratory syncytial virus and assignment of polypeptides to the 10 viral genes, J. Virol. 49:572–578.PubMedGoogle Scholar
  23. Collins, P. L., Olmsted, R. A., Spriggs, M. K., Johnson, P. R., and Buckler-White, A. J., 1987, Gene overlap and site-specific attenuation of transcription of the viral polymerase L gene of human respiratory syncytial virus, Proc. Natl. Acad. Sci USA 84:5134–5138.PubMedCrossRefGoogle Scholar
  24. Cosby, S. L., Lyons, C., Fitzgerald, S. P., Martin, S. J., Pressdee, S., and Allen, I. V., 1981, The isolation of large and small plaque canine distemper viruses which differ in their neurovirulence for hamsters, J. Gen. Virol. 52:345–353.PubMedCrossRefGoogle Scholar
  25. Cosby, S. L., Morrison, J., Rima, B. K., and Martin, S. J., 1983, An immunological study of infection of hamsters with large and small plaque canine distemper viruses, Arch. Virol. 76:201–210.PubMedCrossRefGoogle Scholar
  26. Cosby, S. L., Lyons, C., Rima, B. K., and Martin, S. J., 1985, The generation of small-plaque mutants during undiluted passage of canine distemper virus, Intervirology 23:157–166.PubMedCrossRefGoogle Scholar
  27. Crowley, J. C., Dowling, P. C., Menonna, J., Silverman, J. I., Shuback, D., Cook, S. D., and Blumberg, B. M., 1988, Sequence variability and function of measles virus 3′ and 5′ ends and intercistronic regions, Virology 164:498–506.PubMedCrossRefGoogle Scholar
  28. Curran, J., and Kolakofsky, D., 1988, Ribosomal initiation from an ACG codon in the Sendai virus P/C mRNA, EMBO J. 7:245–251.PubMedGoogle Scholar
  29. Dahlberg, J. E., 1968, Ph. D. Thesis, Purdue University, West Lafayette, Indiana.Google Scholar
  30. Dahlberg, J. E., and Simon, E. H., 1968, Complementation in Newcastle disease virus, Bactehol. Proc. 1968:162.Google Scholar
  31. Dahlberg, J. E., and Simon, E. H., 1969a, Recombination in Newcastle disease virus (NDV): The problem of complementing heterozygotes, Virology 38:490–493.PubMedCrossRefGoogle Scholar
  32. Dahlberg, J. E., and Simon, E. H., 1969b, Physical and genetic studies of Newcastle disease virus: Evidence for multiploid particles, Virology 38:666–678.PubMedCrossRefGoogle Scholar
  33. Domingo, E., Sabo, D., Taniguchi, T, and Weissmann, C., 1978, Nucleotide sequence heterogeneity of an RNA phage population, Cell 13:735–744.PubMedCrossRefGoogle Scholar
  34. Drake, J. W, 1962, Multiplicity reactivation of Newcastle disease virus, J. Bacteriol. 84:352–356.PubMedGoogle Scholar
  35. Estupinan, J., and Hanson, R. P., 1971a, Methods of isolating six mutant classes from the Hickman strain of Newcastle disease virus, Avian Dis. 15:798–804.PubMedCrossRefGoogle Scholar
  36. Estupinan, J., and Hanson, R. P., 1971b, Mutation frequency of red and clear plaque types of the Hickman strain of Newcastle disease virus, Avian Dis. 15:805–808.PubMedCrossRefGoogle Scholar
  37. Faulkner, G. P., Follett, E. A. C., Shirodaria, P. V., and Pringle, C. R., 1976, Respiratory syncytial virus ts mutants and nuclear immunofluorescence, J. Virol. 20:487–500.PubMedGoogle Scholar
  38. Fisher, L. E., 1983, Characterization of four cell lines persistently infected with measles virus, Arch. Virol. 77:51–60.PubMedCrossRefGoogle Scholar
  39. Fisher, L. E., and Rapp, F., 1979a, Role of virus variants and cells in maintenance of persistent infection by measles virus, J. Virol. 30:64–68.PubMedGoogle Scholar
  40. Fisher, L. E., and Rapp, F., 1979b, Temperature-dependent expression of measles virus structural proteins in persistently infected cells, Virology 94:55–60.PubMedCrossRefGoogle Scholar
  41. Gadkari, D. A., and Pringle, C. R., 1980, Temperature-sensitive mutants of Chandipura virus. I. Inter-and intra-group complementation, J. Virol. 33:100–114.PubMedGoogle Scholar
  42. Gharpure, M. A., Wright, P. F., and Chanock, R. M., 1969, Temperature-sensitive mutants of respiratory syncytial virus, J. Virol. 3:414–421.PubMedGoogle Scholar
  43. Gimenez, H. B., and Pringle, C. R., 1978, Seven complementation groups of respiratory syncytial virus temperature-sensitive mutants, J. Virol. 27:459–464.PubMedGoogle Scholar
  44. Granoff, A., 1959a, Studies on mixed infection with Newcastle disease virus. I. Isolation of Newcastle disease virus mutants and test for genetic recombination between them, Virology 9:636–648.PubMedCrossRefGoogle Scholar
  45. Granoff, A., 1959b, Studies on mixed infection with Newcastle disease virus. II. The occurrence of Newcastle disease virus heterozygotes and the study of phenotypic mixing involving serotypes and thermal stability, Virology 9:649–670.PubMedCrossRefGoogle Scholar
  46. Granoff, A., 1961a, Induction of Newcastle disease virus mutants with nitrous acid, Virology 13:402–408.PubMedCrossRefGoogle Scholar
  47. Granoff, A., 1961b, Studies on mixed infection with Newcastle disease virus. III. Activation of nonplaque-forming virus by plaque-forming virus, Virology 14:143–144.PubMedCrossRefGoogle Scholar
  48. Granoff, A., 1962, Heterozygosis and phenotypic mixing with Newcastle disease virus, Cold Spring Harbor Symp. Quant. Biol. 27:319–326.PubMedCrossRefGoogle Scholar
  49. Granoff, A., 1964, Nature of Newcastle disease virus population, in “Newcastle Disease Virus, an Evolving Pathogen” (R. P. Hanson, ed.), pp. 107–118, University of Wisconsin Press, Madison, Wisconsin.Google Scholar
  50. Haspel, M. V., and Rapp, F., 1975, Measles virus: An unwanted variant causing hydrocephalus, Science 187:450–451.PubMedCrossRefGoogle Scholar
  51. Haspel, M. V., Knight, P. R., Duff, R. G., and Rapp, F., 1973, Activation of a latent measles virus infection in hamster cells, J. Virol. 12:690–695.PubMedGoogle Scholar
  52. Haspel, M. V., Duff, R., and Rapp, F., 1975, Isolation and preliminary characterization of mutants of measles virus, J. Virol. 16:1000–1009.PubMedGoogle Scholar
  53. Holland, J. J., Grabau, E. A., Jones, C. L., and Semler, B. L., 1979, Evolution of multiple genome mutations during long-term persistent infections by vesicular stomatitis virus, Cell 16:495–504.PubMedCrossRefGoogle Scholar
  54. Homma, M., and Ohuchi M., 1973, Trypsin action on the growth of Sendai virus in tissue culture cells, J. Virol. 12:1457–1465.PubMedGoogle Scholar
  55. Hsu, M.-C., Scheid, A., and Choppin, P. W, 1987, Protease activation mutants of Sendai virus: Sequence analysis of the mRNA of the fusion protein (F) gene and direct identification of the cleavage-activation site, Virology 156:84–90.PubMedCrossRefGoogle Scholar
  56. Hull, J., Krah, D., and Choppin, P., 1987, Resistance of a measles virus mutant to fusion inhibiting oligopeptides is not associated with mutations in the fusion peptide, Virology 159:368–372.PubMedCrossRefGoogle Scholar
  57. Iorio, R. M., and Bratt, M. A., 1983, Monoclonal antibodies to Newcastle disease virus: Delineation of four epitopes on the HN glycoprotein, J. Virol. 48:440–450.PubMedGoogle Scholar
  58. Iorio, R. M., and Bratt, M. A., 1984a, Monoclonal antibodies as functional probes of the HN glycoprotein of Newcastle disease virus: Antigenic separation of the hemagglutinating and neuraminidase sites, J. Immunol. 133:2215–2219.PubMedGoogle Scholar
  59. Iorio, R. M., and Bratt, M. A., 1984b, Neutralization of Newcastle disease virus by monoclonal antibodies to the hemagglutinin-neuraminidase glycoprotein: Requirement for antibodies to four sites for complete neutralization, J. Virol. 51:445–451.PubMedGoogle Scholar
  60. Iorio, R. M., and Bratt, M. A., 1985, Selection of unique antigenic variants of Newcastle disease virus with neutralizing monoclonal antibodies and anti-immunoglobulin, Proc. Natl. Acad. Sci. USA 7106-7110.Google Scholar
  61. Ito, Y., Tsurudome, M., and Hishiyama, M., 1987, Immunological relationships among human and non-human paramyxoviruses revealed by immunoprecipitation, J. Gen. Virol. 68:1289–1297.PubMedCrossRefGoogle Scholar
  62. Itoh, M., and Homma, H., 1988, Single amino acid change at the cleavage site of the fusion protein is responsible for both enhanced chymotrypsin sensitivity and trypsin resistance of a Sendai virus mutant TR-5, J. Gen. Virol. 69:2907–2911.PubMedCrossRefGoogle Scholar
  63. Itoh, M., Shibuta, H., and Homma, M., 1987, Single amino acid substitution of Sendai virus at the cleavage site of the protein confers trypsin resistance, J. Gen. Virol. 68:2939–2944.PubMedCrossRefGoogle Scholar
  64. Johnson, P. R., Spriggs, M. K., Olmsted, R. A., and Collins, P. L., 1987, The G glycoprotein of human respiratory syncytial virus of subgroups A and B: Extensive sequence divergence between antigenically related proteins, Proc. Natl. Acad. Sci. USA 84:5625–5629.PubMedCrossRefGoogle Scholar
  65. Ju, G., Udem, S., Rager-Zisman, B., and Bloom, B. R., 1978, Isolation of a heterogeneous population of temperature-sensitive mutants of measles virus from persistently infected human lymphoblastoid cell lines, J. Exp. Med. 147:1637–1652.PubMedCrossRefGoogle Scholar
  66. Ju, G., Birrer, M., Udem, S., and Bloom, B., 1980, Complementation analysis of measles virus mutants isolated from persistently infected lymphoblastoid cell lines, J. Virol. 33:1004–1012.PubMedGoogle Scholar
  67. Kamer, G., and Argos, P., 1984, Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses, Nucleic Acids Res. 12:7269–7282.PubMedCrossRefGoogle Scholar
  68. King, A. M. Q., McCahon, D., Slade, W.R., and Newman, J. W, 1982, Recombination in RNA, Cell 29:921–928.PubMedCrossRefGoogle Scholar
  69. Kingsbury, D. W, and Granoff, A., 1970, Studies on mixed infection with Newcastle disease virus. IV. On the structure of heterozygotes, Virology 42:262–265.PubMedCrossRefGoogle Scholar
  70. Kingsbury, D. W, Bratt, M. A., Choppin, P. W, Hanson, R. P., Hosaka, Y., ter Meulen, V, Norrby, E., Plowright, W, Rott, R., and Wunner, W. H., 1978, Paramyxoviridae, Intervirology 10:137–15CrossRefGoogle Scholar
  71. Kirkegaard, A, and Baltimore, D., 1986, The mechanism of RNA recombination in poliovirus, Cell 47:433–443.PubMedCrossRefGoogle Scholar
  72. Kirvatis, J., and Simon, E. H., 1965, A radiobiological study of the development of Newcastle disease virus, Virology 26:545–553.CrossRefGoogle Scholar
  73. Knight, P. R., Duff, R., and Rapp, F., 1972, Latency of human measles virus in hamster cells, J. Virol. 10:995–1001.PubMedGoogle Scholar
  74. Komada, H., Tsurudome, M., Bando, H., Nishio, M., Yamada, A., Hishiyama, M., and Ito, Y., 1989, Virus-specific polypeptides of human parainfluenza virus type 4 and their synthesis in infected cells, Virology 171:254–259.PubMedCrossRefGoogle Scholar
  75. Kowal, K. f., and Youngner, J. S., 1978, Induction of interferon by temperature-sensitive mutants of Newcastle disease virus, Virology 90:90–102.PubMedCrossRefGoogle Scholar
  76. Lai, M. M. C., Baric, R. S., Makino, S., Keck, J. G., Egbert, J., Leibowitz, J. L., and Stohlman, S. A., 1985, Recombination between nonsegmented RNA genomes of murine coronaviruses, J. Virol. 56:449–456.PubMedGoogle Scholar
  77. Lamb, R. A., and Dreyfuss, G., 1989, RNA structure. Unwinding with a vengeance, Nature 337:19–20.PubMedCrossRefGoogle Scholar
  78. Ling, R., and Pringle, C. R., 1988, Turkey rhinotracheitis virus: in vivo and in vitro polypeptide synthesis, J. Gen. Virol. 69:917–923.PubMedCrossRefGoogle Scholar
  79. Ling, R., and Pringle, C. R., 1989a, Polypeptides of pneumonia virus of mice I: Immunological crossreactions and post-translational modifications, J. Gen. Virol. 70:1427–1440.PubMedCrossRefGoogle Scholar
  80. Ling, R., and Pringle, C. R., 1989b, Polypeptides of pneumonia virus of mice II: Characterization of the glycoproteins, J. Gen. Virol. 70:1441–1452.PubMedCrossRefGoogle Scholar
  81. Lomniczi, B., 1975, Properties of non-neurovirulent plaque-forming mutants of Newcastle disease virus, Avian Dis. 20:126–134.CrossRefGoogle Scholar
  82. Lopez-Galindez, C., Lopez, J. A., Melero, J. A., de la Fuente, L., Martinez, C., Ortin, J., and Perucho, M., 1988, Analysis of genetic variability and mapping of point mutations in influenza virus by the RNase A mismatch cleavage method, Proc. Acad. Nail. Sci. USA 85:3522–3526.CrossRefGoogle Scholar
  83. Löve, A., Rydbeck, R., Kristensson, K., Örvell, C., and Norrby, E., 1985, Hemagglutinin-neuraminidase glycoprotein as a determinant of pathogenicity in mumps virus hamster encephalitis: Analysis of mutants selected with monoclonal antibodies, J. Virol. 53:67–74.PubMedGoogle Scholar
  84. Madansky, C. H., and Bratt, M., 1978, Noncytopathic mutants of Newcastle disease virus, J. Virol. 26:724–729.PubMedGoogle Scholar
  85. Madansky, C. H., and Bratt, M., 1981a, Noncytopathic mutants of Newcastle disease virus are defective in virus specific RNA synthesis, J. Virol. 37:317–327.PubMedGoogle Scholar
  86. Madansky, C. H., and Bratt, M., 1981b, Relationships among virus spread, cytopathogenicity, and virulence as revealed by the noncytopathic mutants of Newcastle disease virus, J. Virol. 40:691–702.PubMedGoogle Scholar
  87. Marx, P. A., Portner, A., and Kingsbury, D. W., 1974, Sendai virion transcriptase complex: Polypeptide composition and inhibition by virion envelope proteins, J. Virol. 13:107–112.PubMedGoogle Scholar
  88. McIntosh, K., and Chanock, R. M., 1985, Respiratory syncytial virus, in “Virology” (B. N. Fields et al., eds.), pp. 1285–1304, Raven Press, New York.Google Scholar
  89. McIntosh, K., and Fishaut, J. M., 1980, Immunopathologic mechanisms in lower respiratory tract disease of infants due to respiratory syncytial virus, Prog. Med. Virol. 26:94–118.PubMedGoogle Scholar
  90. McKay, E., Higgins, P., Tyrrell, D., and Pringle, C. R., 1988, Immunogenicity and pathogenicity of temperature-sensitive modified respiratory syncytial virus in adult volunteers, J. Med. Virol. 25:411–421.PubMedCrossRefGoogle Scholar
  91. McKimm, J., and Rapp, F., 1977, Stability of measles virus temperature-sensitive virus mutants to induce interferon, Virology 76:409–415.PubMedCrossRefGoogle Scholar
  92. Miyata, T., and Yasunaga, T., 1980, Molecular evolution of mRNA: A method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application, J. Mol. Evol. 16:23–36.PubMedCrossRefGoogle Scholar
  93. Mochizuki, Y, Tashiro, M., and Homma, M., 1988, Pneumopathogenicity in mice of a Sendai virus mutant, TSrev-58, is accompanied by in vitro activation with trypsin, J. Virol. 62:3040–3042.PubMedGoogle Scholar
  94. Morrison, T. G., 1988, Structure, function, and intracellular processing of paramyxovirus membrane proteins, Virus Res. 10:113–136.PubMedCrossRefGoogle Scholar
  95. Nicholas, J. A., Levely, M. E., Mitchell, M. A., and Smith, C. W., 1989, A 16-amino acid peptide of respiratory syncytial virus 1A protein contains two overlapping T-cell stimulating sites distinguishable by clan II MHC restriction elements, J. Immunol. 143:2790–2796.PubMedGoogle Scholar
  96. Nishikawa, K., Isomura, S., Suzuki, S., Watanabe, E., Hamaguchi, M., Yoshida, T., and Nagai, Y., 1983, Monoclonal antibodies to the HN glycoprotein of Newcastle disease virus. Biological characterization and use for strain comparisons, Virology 130:318–330.PubMedCrossRefGoogle Scholar
  97. Norrby, E., Sheshberadaran, H., McCullough, K. C., Carpenter, W. C., and Örvell, C., 1985, Is rinderpest virus the archevirus of the Morbillivirus genus?, Intervirology 23:228–232.PubMedCrossRefGoogle Scholar
  98. Olmsted, R. A., Murphy, B. R., Lawrence, L. A., Elango, N., Moss, B., and Collins, P., 1989, Processing, surface expression, and immunogenicity of carboxy-terminally truncated mutants of G protein of human respiratory syncytial virus, J. Virol. 63:411–420.PubMedGoogle Scholar
  99. Paterson, R. G., and Lamb, R. A., 1987, Ability of the hydrophobic fusion-related external domain of a paramyxovirus F protein to act as a membrane anchor domain, Cell 48:441–452.PubMedCrossRefGoogle Scholar
  100. Peeples, M. E., and Bratt, M. A., 1982a, UV irradiation analysis of complementation between, and replication of, RNA-negative temperature-sensitive mutants of Newcastle disease virus, J. Virol. 41:965–973.PubMedGoogle Scholar
  101. Peeples, M. E., and Bratt, M. A., 1982b, Virion functions of RNA +ve temperature-senitive mutants of Newcastle disease virus, J. Virol. 42:440–446.PubMedGoogle Scholar
  102. Peeples, M. E., and Bratt, M. A., 1984, Mutation in the matrix protein of Newcastle disease virus can result in decreased fusion glycoprotein into particles and decreased infectivity, J. Virol. 51:81–90.PubMedGoogle Scholar
  103. Peeples, M. E., Rasenas, L. L., and Bratt, M. A., 1982, RNA synthesis by Newcastle disease virus temperature-sensitive mutants in two RNA-negative complementation groups, J. Virol. 42:996–1006.PubMedGoogle Scholar
  104. Peeples, M. E., Glickman, R. L., and Bratt, M. A., 1983, Thermostabilities of virion activities of Newcastle disease virus: Evidence that the temperature-sensitive mutants in complementation groups B, BC, and C have altered HN protein, J. Virol. 45:18–26.PubMedGoogle Scholar
  105. Peeples, M. E., Glickman, R. L., Gallagher, J. P., and Bratt, M. A., 1988, Temperature-sensitive mutants of Newcastle disease virus altered in HN glycoprotein size, stability or antigenic maturity, Virology 164:284–289.PubMedCrossRefGoogle Scholar
  106. Portner, A., 1977, Association of nucleocapsid polypeptides with defective RNA synthesis in a temperature-sensitive mutant of Sendai virus, Virology 77:481–489.PubMedCrossRefGoogle Scholar
  107. Portner, A., 1981, The HN glycoprotein of Sendai virus: Analysis of site(s) involved in hemag-glutinating and neuraminidase activities, Virology 115:375–384.PubMedCrossRefGoogle Scholar
  108. Portner, A., 1984, Monoclonal antibodies as probes of the antigenic structure and functions of Sendai virus glycoproteins, in: Non-segmented Negative Strand Viruses (D. H. L. Bishop and R. W. Compans, eds.), pp. 345–350. Academic Press, Orlando, FL.Google Scholar
  109. Portner, A., Marx, P. A., and Kingsbury, D. W., 1974, Isolation and characterization of Sendai virus temperature-sensitive mutants, J. Virol. 13:298–304.PubMedGoogle Scholar
  110. Portner, A., Scroggs, R. A., Marx, P. A., and Kingsbury, D. W., 1975, A temperature-sensitive mutant of Sendai virus with an altered hemagglutinin-neuraminidase polypeptide: Consequences for virus assembly and cytopathology, Virology 67:179–187.PubMedCrossRefGoogle Scholar
  111. Portner, A., Webster, R. G., and Bean, W. J., 1980, Similar frequencies of antigenic variants in Sendai, vesicular stomatitis and influenza A virus, Virology 104:235–238.PubMedCrossRefGoogle Scholar
  112. Portner, A., Scroggs, R. A., and Metzger, D. W., 1987a, Distinct functions of antigenic sites of the HN glycoprotein of Sendai virus, Virology 198:61–68.CrossRefGoogle Scholar
  113. Portner, A., Scroggs, R. A., and Naeve, C. W., 1987b, The fusion glycoprotein of Sendai virus: Sequence analysis of an epitope involved in fusion and virus neutralization, Virology 157:556–559.PubMedCrossRefGoogle Scholar
  114. Preble, O. T., and Youngner, J. S., 1972, Temperature-sensitive mutants isolated from L cells persistently infected with Newcastle disease virus, J. Virol. 9:200–206.PubMedGoogle Scholar
  115. Preble, O. T, and Youngner, J. S., 1973a, Temperature-sensitive defect of mutants isolated from L cells persistently infected with Newcastle disease virus, J. Virol. 12:472–480.PubMedGoogle Scholar
  116. Preble, O. T, and Youngner, J. S., 1973b, Selection of temperature-sensitive mutants during persistent infection: Role in maintenance of persistent Newcastle disease virus of L cells, J. Virol. 12:481–491.PubMedGoogle Scholar
  117. Preble, O. T., and Youngner, J. S., 1975, Temperature-sensitive viruses and the etiology of chronic and inapparent infections, J. Infect. Dis. 131:467–473.PubMedCrossRefGoogle Scholar
  118. Pringle, C. R., 1987, Paramyxoviruses and disease, in “Molecular Basis of Virus Disease” (W. C. Russell and J. W. Almond, eds.), pp. 51–90, Cambridge University Press, Cambridge.Google Scholar
  119. Pringle, C. R., 1988, Rhabdovirus genetics, in “The Rhabdoviruses” (R. R. Wagner, ed.), pp. 167–243, Plenum Press, New York.Google Scholar
  120. Pringle, C. R., Shirodaria, P. V., Gimenez, H. B., and Levine, S., 1981, Antigen and polypeptide synthesis by temperature-sensitive mutants of respiratory syncytial virus, J. Gen. Virol. 54:173–183.PubMedCrossRefGoogle Scholar
  121. Richardson, C. D., Scheid, A., and Choppin, P. W., 1980, Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the Ntermini of the F1 or HA2 viral polypeptides, Virology 105:205–222.PubMedCrossRefGoogle Scholar
  122. Richardson, L. S., Schnitzed, T. J., Belshe, R. B., Prevar, D. A., and Chanock, R. M., 1977, Isolation and characterization of further defective clones of a temperature-sensitive mutant (ts1) of respiratory syncytial virus, Arch. Ges. Virusforsch. 54:53–60.Google Scholar
  123. Rima, B. K., 1989, Comparison of amino acid sequences of the major structural proteins of the paramyxo-and morbilliviruses, in Genetics and Pathogenicity of Negative Strand Viruses (D. Kolakofsky and B. M. J. Mahy, eds.), pp. 254–263. Elsevier, Amsterdam.Google Scholar
  124. Robbins, S. J., 1983, Progressive invasion of cell nuclei by measles virus in persistently infected human cells, J. Gen. Virol. 64:2335–2338.PubMedCrossRefGoogle Scholar
  125. Rowlands, D., Grabau, E., Spindler, K., Jones, C., Semler, B., and Holland, J., 1980, Virus protein changes and RNA termini alterations evolving during persistent infection, Cell 19:871–880.PubMedCrossRefGoogle Scholar
  126. Sakaguchi, T., Toyoda, T., Gotch, B., Inocencio, N. M., Kuma, K., Miyata, T., and Nagai, Y., 1989, Newcastle disease virus evolution. I. Multiple lineages defined by sequence variability of the haemagglutinin-neuraminidase gene, Virology 169:260–272.PubMedCrossRefGoogle Scholar
  127. Samson, A. C. R., Chambers, P., Lee, C. M., and Simon, E., 1981, Temperature-sensitive mutant of Newcastle disease virus which has an altered nucleocapsid-associated protein, J. Gen. Virol. 54:197–201.PubMedCrossRefGoogle Scholar
  128. Scheid, A., and Choppin, P. W., 1974, Identification of the biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus, Virology 57:475–490.PubMedCrossRefGoogle Scholar
  129. Scheid, A., and Choppin, P. W., 1976, Protease activation mutants of Sendai virus. Activation of biological properties by specific proteases, Virology 69:265–277.PubMedCrossRefGoogle Scholar
  130. Schloer, G. M., and Hanson, R. P., 1968, Relationship of plaque size and virulence for chickens of 14 representative Newcastle disease virus strains, J. Virol. 2:40–47.PubMedGoogle Scholar
  131. Schloer, G. M., and Hanson, R. P., 1971, Virulence and in vitro characteristics of four mutants of Newcastle disease virus, J. Infect. Dis. 124:289–295.PubMedCrossRefGoogle Scholar
  132. Sheshbaradaran, H., Norrby, E., McCullough, K. C., Carpenter, W., and Örvell, C., 1986, The antigenic relationship between measles, canine distemper and rinderpest viruses studied with monoclonal antibodies, J. Gen. Virol. 67:1381–1392.CrossRefGoogle Scholar
  133. Shioda, T., Iwasaki, K., and Shibuta, H., 1986, Determination of the complete nucleotide sequence of the Sendai virus genome RNA and the predicted amino acid sequences of the F, HN and L proteins, Nucleic Acids Res. 4:1545–1563.CrossRefGoogle Scholar
  134. Shioda, T., Wakao, S., Suzo, S., and Shibuta, H., 1988, Differences in bovine parainfluenza 3 virus variants studied by sequencing of the genes of viral envelope proteins, Virology 162:388–396.PubMedCrossRefGoogle Scholar
  135. Stanwick, T. L., and Hallum, J. V., 1976, Comparison of RNA polymerase associated with Newcastle disease virus and a temperature-sensitive mutant of Newcastle disease virus isolated from persistently infected L cells, J. Virol. 17:68–73.Google Scholar
  136. Steinhauer, D. A., and Holland, J. J., 1986, Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA, J. Virol. 57:219–228.PubMedGoogle Scholar
  137. Tashiro, M., and Homma, M., 1983, Pneumotropism of Sendai virus in relation to protease-mediated activation in mouse lungs, Infect. Immun. 39:879–888.PubMedGoogle Scholar
  138. Taylor, J., Mason, W., Summers, J., Goldberg, J., Aldrich, C., Coates, L., Gerin, J., and Gowans, E., 1987, Replication of human hepatitis delta virus in primary cultures of woodchuck hepatocytes, J. Virol. 61:2891–2895.PubMedGoogle Scholar
  139. Thiry, L., 1964, Some properties of chemically induced small-plaque mutants of Newcastle disease virus, Virology 24:6–15.CrossRefGoogle Scholar
  140. Thomas, S. M., Lamb, R. A., and Paterson, R. G., 1988, Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5, Cell 54:891–902.PubMedCrossRefGoogle Scholar
  141. Thompson, S. D., and Portner, A., 1987, Location of functional sites on the hemagglutinin-neur-aminidase glycoprotein of Sendai virus by sequence analysis of antigenic and temperature-sensitive mutants, Virology 160:1–8.PubMedCrossRefGoogle Scholar
  142. Toyoda, T., Sakaguchi, T., Imai, K., Inocencio, N. M., Gotch, B., Hamaguchi, M., and Nagai, M., 1987, Structural comparison of the cleavage-activation site of the fusion glycoprotein between virulent and avirulent strains of Newcastle disease virus, Virology 158:242–247.PubMedCrossRefGoogle Scholar
  143. Toyoda, T., Sakaguchi, T., Hirota, H., Gotch, B., Kuma, K., Miyata, T., and Nagai, Y., 1989, Newcastle disease virus evolution. II. Lack of genetic recombination in generating virulent and avirulent strains, Virology 169:273–282.PubMedCrossRefGoogle Scholar
  144. Tsipis, J. E., and Bratt, M., 1976, Isolation and preliminary characterization of temperature-sensitive mutants of Newcastle disease virus, J. Virol. 18:848–855.PubMedGoogle Scholar
  145. Vijaya, S., Elango, N., Zavala, F., and Moss, B., 1988, Transport to the cell surface of a peptide sequence attached to the truncated C terminus of an N-terminally anchored integral membrane protein, Mol. Cell. Biol. 8:1709–1714.PubMedGoogle Scholar
  146. Vydelingum, S., Ilonen, J., Salonen, R., Marusyk, R., and Salmi, A., 1989, Infection of human peripheral blood mononuclear cells with a temperature-sensitive mutant of measles virus, J. Virol. 63:689–695.PubMedGoogle Scholar
  147. Wang, K.-S., Choo, K.-L., Weiner, A. J., Ou, H.-J., Najarian, J. C., Thayer, R. M., Mullenbach, J. T, Denniston, K. J., Gerin, J. L., and Houghton, M., 1986, Structure, sequence and expression of the HDV genome, Nature 323:508–514.PubMedCrossRefGoogle Scholar
  148. Watt, P. J., Robinson, B. S., Pringle, C. R., and Tyrrell, D. A. J., 1990, Determinants of susceptibility to challenge and the antibody response of adult volunteers given experimental RS virus vaccines, Vaccine 8:231–236.PubMedCrossRefGoogle Scholar
  149. Waxam, M. N., and Wolinsky, J. S., 1986, A fusing mumps virus variant selected from a nonfusing parent with the neuraminidase inhibitor 2-deoxy-2,3-dehydro-N-acteylneuraminic acid, Viro-logy 151:286–295.Google Scholar
  150. Weissmann, C., 1989, Single-strand RNA, Nature 337:415–416.CrossRefGoogle Scholar
  151. White, B. T., and McGeoch, D. J., 1987, Isolation and characterization of conditional lethal amber nonesense mutants of vesicular stomatitis virus, J. Gen. Virol. 68:3033–3044.PubMedCrossRefGoogle Scholar
  152. Wild, T. F., and Dugre, R., 1978, Establishment and characterization of a subacute sclerosing panencephalitis (measles) virus persistent infection in BGM cells, J. Gen. Virol. 39:113–124.PubMedCrossRefGoogle Scholar
  153. Woyciechowska, J., Breschkin, A. M., and Rapp, F., 1977, Measles virus meningoencephalitis. Immunofluorescence study of brains infected with virus mutants, Lab. Invest. 36:233–236.PubMedGoogle Scholar
  154. Yamazi, Y, and Black, F. L., 1972, Isolation of temperature-sensitive mutants of measles virus, Med. Biol. (Jpn) 84:47–51.Google Scholar
  155. Yamazi, Y, and Black, F. L., Honda, H., Todome, Y, Suganuma, M., Watari, E., Iwaguchi, H., and Nagashima, M., 1975, Characterization of temperature-sensitive mutants of measles virus: Temperature-shift experiment, Jpn. J. Med. Sci. Biol. 28:223–229.PubMedGoogle Scholar
  156. Yusoff, K., Millar, N. S., Chambers, P., and Emmerson, P. T., 1987, Nucleotide sequence analysis of the L gene of Newcastle disease virus: Homologies with Sendai and vesicular stomatitis viruses, Nucleic Acids Res. 15:3961–3976.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Craig R. Pringle
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations