Genome Organization of Porcine Epidemic Diarrhoea Virus

  • M. Duarte
  • J. Gelfi
  • P. Lambert
  • D. Rasschaert
  • H. Laude
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 342)


In order to study the organization of the genome of porcine epidemic diarrhoea virus (PEDV), we constructed a cDNA library in a phage expression vector by using poly(A) RNA from PEDV-infected Vero cells. An anti-PEDV hyperimmune serum was used to probe the library. The first isolated clone mapped within the N gene and was subsequently used for rescreening the library. The selected clones allowed us to establish the sequence of the 3’-most 7.4 kb of the PEDV genome. Analysis of the cDNA sequences revealed a 3’-coterminal nested structure, which is typical of Coronaviridae and the presence of a hexameric sequence XUA(A/G)AC upstream of each coding region. The amino acid sequences deduced from four of the five ORFs identified showed the characteristic features of the structural proteins S, M, sM and N. Only one ORF located between the S and M genes was found to potentially encode a non-structural polypeptide. Our data lead us to conclude that PEDV is a member of Coronaviridae and belongs to the same genetic subset as TGEV, FIPV and HCV 229E.


Porcine Epidemic Diarrhoea Virus Porcine Epidemic Diarrhoea Virus Isolate Hexameric Motif Genetic Subset State Veterinary Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.B. Pensaert, P. De Bouck. Arch. Virol. 58: 243–247 (1978).PubMedCrossRefGoogle Scholar
  2. 2.
    P. De Bouck and M. Pensaert. Am. J. Vet. Res. 41 (n°2): 219–223 (1980).Google Scholar
  3. 3.
    M.B. Pensaert, P. De Bouck and D.J. Reynolds. Arch. Virol. 68: 45–52 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Hofmann and R. Wyler. J. Clin. Microbiol. 26: 2235–2239 (1988).PubMedGoogle Scholar
  5. 5.
    H.F. Egberink, J. Ederveen, P. Callebaut and M.C. Horzinek. Am. J. Vet. Res. 49: 1320–1324 (1988).PubMedGoogle Scholar
  6. 6.
    Z.Yaling, J. Edenween, H.Egberink, M. Pensaert and M. Horzinek. Arch. Virol. 102: 63–71 (1988).CrossRefGoogle Scholar
  7. 7.
    J. Sambrook, E.F. Fritsch and T.Maniatis. 2nd edn. Cold Spring Harbor Laboratory, New York, (1989).Google Scholar
  8. 8.
    M. Joo and S. Makino. J. Virol. 66: 6330–6337 (1992).PubMedGoogle Scholar
  9. 9.
    D. Rasschaert, J. Gelfi and H. Laude. Biochimie 69: 591–600 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    R.J. De Groot, A.C. Andeweg, M.C. Horzinek and W.J.M. Spaan. Virology 167: 370–376 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    B.C. Horshurgh, I. Brierley and T.D.K. Brierley. J. gen. Virol. 73: 2849–2862 (1992).CrossRefGoogle Scholar
  12. 12.
    S.S. Schreiber, T. Kamahora and M.M.C. Lai. Virology 169: 142–151 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    M.M.C.Lai. Aniser. Rev. Microbiol. 44: 303–33 (1990).CrossRefGoogle Scholar
  14. 14.
    T.Raahe and S. Siddell. Nocl. Acids Res. 17: 6387.(1989)CrossRefGoogle Scholar
  15. 15.
    P.A. Kapke, F.Y.T. Tung and D.A. Brian. Virus genes 2: 3, 293–294 (1988).CrossRefGoogle Scholar
  16. 16.
    P. Jouvenne, S. Mounir, J. Steward, D. Richardson, and P. Talbot. Virus Res. 22: 125–141 (1992).PubMedCrossRefGoogle Scholar
  17. 17.
    D. Rasschaert, M. Duarte and H. Laude. J. gen. Virol. 71: 2599–2607 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • M. Duarte
    • 1
  • J. Gelfi
    • 1
  • P. Lambert
    • 1
  • D. Rasschaert
    • 1
  • H. Laude
    • 1
  1. 1.Unité de Virologie et Immunologie MoléculairesINRAJouy en JosasFrance

Personalised recommendations