Advertisement

The Use of PCR Genome Mapping for the Characterisation of TGEV Strains

  • P. Britton
  • S. Kottier
  • C.-M. Chen
  • D. H. Pocock
  • H. Salmon
  • J. M. Aynaud
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 342)

Abstract

Previous studies on different transmissible gastroenteritis virus (TGEV) strains, including porcine respiratory coronavirus (PRCV), have identified regions within the genome that are polymorphic as regards insertions and deletions. For example the 672 base deletion within the S gene and multiple deletions 5’, within and 3’ of the ORF-3a gene were detected in strains of PRCV. The presence of deletions may be associated with a change in the virulence, attenuation or tissue tropism of the isolate. The Nouzilly (188-SG) TGEV vaccine strain was attenuated by passage of a cell culture adapted virulent isolate D-52 188 times through swine testis cells after treatment with gastric juice. PCR amplification with oligonucleotides, corresponding to known TGEV sequences, were used to analyse D-52 and 188-SG for genetic variation. Results with several pairs of oligonucleotides within the first 1565 nucleotides of the S gene did not identify a deletion within this region of the genome from either strain. However, oligonucleotides directed against the ORF-3a/3b region detected a deletion of about 250 nucleotides within the 188-SG genome but not in the D-52 genome. Since all the attenuated TGEV strains so far sequenced, PRCV, Miller SP and 188-SG, contained deletions within the ORF-3a/3b, it would suggest that this region of the TGEV genome is involved in regulating viral virulence.

Keywords

Small Plaque Base Deletion Base Insertion Transmissible Gastroenteritis Virus TGEV Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.P. Doyle and L.M. Hutchings, J. Amer. Vet. Med. Assoc. 108:257–259 (1946).Google Scholar
  2. 2.
    N.R. Underdahl, C.A. Mebus and A. Torres-Medina, Amer. J. Vet. Res. 36:1473–1476 (1975).PubMedGoogle Scholar
  3. 3.
    E.H. Bohl, R.K.P. Gupta, M.V. Olquin and L.J. Saif, Infect. Immun. 6:289–301 (1972).PubMedGoogle Scholar
  4. 4.
    E.H. Bohl and L.J. Saif, Infect. Immun. 11:23–32 (1975).PubMedGoogle Scholar
  5. 5.
    E.H. Bohl, G.T. Frederick and L.J. Saif, Amer. J. Vet. Res. 36:267–271 (1975).PubMedGoogle Scholar
  6. 6.
    J.-M. Aynaud, T.D. Nguyen, E. Bottreau, A. Brun and P. Vannier, J. Gen. Virol. 66:1911–1917 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    J.M. Aynaud, S. Bernard, E. Bottreau, I. Lancier, H. Salmon and P. Vannier, Vet. Microbiol. 26:227–239 (1991).PubMedCrossRefGoogle Scholar
  8. 8.
    P. Britton, D.J. Garwes, K. Page and J. Walmsley, Expression of porcine transmissible gastroenteritis virus genes in E.coli as β-galactosidase chimaeric proteins, in: “Coronaviruses, Advances in Experimental Medicine and Biology,” M.M.C. Lai and S.A. Stohlman, eds., Plenum Press, New York and London (1987).Google Scholar
  9. 9.
    K.W. Page, P. Britton and M.E.G. Boursnell, Virus Genes 4:289–301. (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    P. Britton, C. Lopez Otin, J. Martin Alonso and F. Parra, Arch. Virol. 105:165–178 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    P. Britton and K.W. Page, Virus Res. 18:71–80 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Britton, K.L. Mawditt and K.W. Page, Virus Res. 21:181–198 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Staden, Nucl. Acids Res. 10:4731–4751 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Devereux, P. Haeberli and O. Smithies, Nucl. Acids Res. 12:387–395 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Rasschaert, J. Gelfi and H. Laude, Biochimie 69:591–600 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    C.-M. Chen, D.H. Pocock and P. Britton, Genomic organisation of a virulent Taiwanese strain of TGEV, in: “Coronaviruses:Molecular Biology and Pathogenesis, Advances in Experimental Medicine and Biology,” H. Laude and J.F. Vautherot, eds., Plenum Press, New York and London (This book).Google Scholar
  17. 17.
    R.D. Wesley, A.K. Cheung, D.D. Michael and R.D. Woods, Virus Res. 13:87–100 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    K.W. Page, K.L. Mawditt and P. Britton, J. Gen. Virol. 72:579–587 (1991).PubMedCrossRefGoogle Scholar
  19. 19.
    R.D. Wesley, A.K. Cheung, D.D. Michael and R.D. Woods, Virus Res. 13:87–100 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    R.D. Wesley, R.D. Woods and A.K. Cheung, J. Virol. 64:4761–4766 (1990).PubMedGoogle Scholar
  21. 21.
    D. Rasschaert, M. Duarte and H. Laude, J. Gen. Virol. 71:2599–2607. (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    R.D. Wesley, R.D. Woods and A.K. Cheung, J. Virol. 64:4761–4766 (1990).PubMedGoogle Scholar
  23. 23.
    R.D. Woods, J. Amer. Vet. Med. Assoc. 173:643–647 (1978).Google Scholar
  24. 24.
    R.D. Wesley, R.D. Woods and A.K. Cheung, J. Virol. 65:3369–3373 (1991).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • P. Britton
    • 1
  • S. Kottier
    • 1
  • C.-M. Chen
    • 1
  • D. H. Pocock
    • 1
  • H. Salmon
    • 2
  • J. M. Aynaud
    • 2
  1. 1.Division of Molecular BiologyA.F.R.C., Institute for Animal HealthCompton, NewburyUK
  2. 2.Laboratoire de Pathologie Infectieuse et ImmunologieI.N.R.A.NouzillyFrance

Personalised recommendations