Coronaviruses pp 227-232 | Cite as

Proteolytic Processing of the N-terminal Region of the Equine Arteritis Virus Replicase

  • Eric J. Snijder
  • Alfred L. M. Wassenaar
  • Willy J. M. Spaan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 342)


A papainlike cysteine protease (PCP) domain in the N-terminal region of the equine arteritis virus (EAV) replicase was identified by in vitro translation and mutagenesis studies. The EAV protease was found to direct an autoproteolytic cleavage at its C-terminus which leads to the production of an approximately 30K N-terminal replicase product (nspl) containing the PCP domain. Amino acid residues Cys164 and His230 of the EAV replicase polyprotein were identified as the most likely candidates for the role of PCP catalytic residues. It was sshown that cleavage occurs in cis between Gly260 and Gly261


Cleavage Product Active Site Residue Protease Domain Rabbit Reticulocyte Lysate Equine Arteritis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P.G.W. Plagemann and V. Moennig, Adv. Virus Res. 41:99.(1991).CrossRefGoogle Scholar
  2. 2.
    J.A. den Boon, E.J. Snijder, E.D. Chirnside, A.A.F. de Vries, M.C. Horzinek and W.J.M. Spaan, J. Virol. 65:2910 (1991).Google Scholar
  3. 3.
    A.A.F. de Vries, E.D. Chirnside, P.J. Bredenbeek, L.A. Gravestein, M.C. Horzinek and W.J.M. Spaan, Nucleic Acids Res. 18:3241 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    W.J.M. Spaan, D. Cavanagh and M.C. Horzinek, J. Gen. Viral. 69:2939 (1988).CrossRefGoogle Scholar
  5. 5.
    E.J. Snijder, M.C. Horzinek and W.J.M. Spaan, J. Virol. 64:331 (1990).PubMedGoogle Scholar
  6. 6.
    E.J. Snijder, J.A. den Boon, P.J. Bredenbeek, M.C. Horzinek, R. Rijnbrand and W.J.M. Spaan,Nucleic Acids Res. 18:4535 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    M.E.G. Boursnell, T.D.K. Brown, I.J. Foulds, P.F. Green, F.M. Tomley and M.M. Binns, J. Gen. Virol. 68:57 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    P.J. Bredenbeek, C.J. Pachuk, J.F.H. Noten, J. Charité, W. Luytjes, S.R. Weiss and W.J.M. Spun, Nucleic Acids Res. 18:1825 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    H.J. Lee, C.K. Shieh, A.E. Gorbalenya, E.V. Koonin, N. la Monica, J. Tuler, A. Bagdzhadzhyan and M.M.C. Lai, Virology 180:567 (1991).PubMedCrossRefGoogle Scholar
  10. 10.
    I. Brierley, P. Diggard and S.C. Inglis, Cell 57:537 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    L. Polgar and P. Halasz, Biochem. J. 207:1 (1982).PubMedGoogle Scholar
  12. 12.
    M.R. Denison, P.W. Zoltick, J.L. Leibowitz, C.J. Pachuk and S.R. Weiss, J. Virol. 65:3067 (1991).Google Scholar
  13. 13.
    A.E. Gorbalenya, E.V. Koonin, A.P. Donchenko and V.M. Blinov, Nucleic Acids Res. 17:4847 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    M.R. Denison, P.W. Zoltick, S.A. Hughes, B. Giangreco, A L. Olson, S. Perlman, J.L. Leibowitz and S.R. Weiss, Virology 189:274 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    A.E. Gorbalenya, E.V. Koonin and M.M.C. Lai, FEBS Lett. 288:201 (1991).PubMedCrossRefGoogle Scholar
  16. 16.
    J.H. Strauss and E.G. Strauss, Semin. Virol. 1:347 (1991).Google Scholar
  17. 17.
    J.C. Carrington and K.L. Herndon, Virology 187:308 (1992).PubMedCrossRefGoogle Scholar
  18. 18.
    C.-S. Oh and J.C. Carrington, Virology 173: 692 (1989).PubMedCrossRefGoogle Scholar
  19. 19.
    G.H. Choi, D.M. Pawlyk and D.L. Nuss, Virology 183:747 (1991).PubMedCrossRefGoogle Scholar
  20. 20.
    E.V. Koonin, G.H. Choi, D.L. Nuss, R. Shapira and J.C. Carrington, Proc. Natl. Acad. Sci. USA 88:10647 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Eric J. Snijder
    • 1
  • Alfred L. M. Wassenaar
    • 1
  • Willy J. M. Spaan
    • 1
  1. 1.Department of Virology, Institute of Medical Microbiology Faculty of MedicineLeiden UniversityLeidenThe Netherlands

Personalised recommendations