Coronaviruses pp 209-214 | Cite as

A Novel Glycoprotein of Feline Infectious Peritonitis Coronavirus Contains a KDEL-like Endoplasmic Reticulum Retention Signal

  • H. Vennema
  • L. Heijnen
  • P. J. M. Rottier
  • M. C. Horzinek
  • W. J. M. Spaan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 342)


A new protein of the feline infectious peritonitis virus (FIPV) was discovered in lysates of infected cells. Expression of the gene encoding open reading frame (ORF) 6b of FIPV in recombinant vaccinia virus infected cells was used to identify it as the 6b protein. It is a novel type of viral glycoprotein whose function is not clear. It is a soluble protein contained in microsomes; its slow export from the cell is caused by the presence of an ER-retention signal at the C-terminus. This amino acid sequence, KTEL, closely resembles the consensus KDEL-signal of soluble resident ER proteins. A mutant 6b protein with the C-terminal sequence KTEV became resistant to digestion by endo-ß-N-acetylglucosaminidase H with a half-time that was reduced threefold. In contrast, a mutant with the sequence KDEL was completely retained in the ER. The FIPV 6b protein is the first example of a viral protein with a functional KDEL-like ER-retention signal.


Recombinant Vaccinia Virus Radio Immunoprecipitation Assay Feline Infectious Peritonitis Virus Sequence KDEL Protein Produce Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Groot, R.J. de, A.C. Andeweg, M.C. Horzinek, and W.J.M. Spaan. (1988) Virology 167:370–376.PubMedCrossRefGoogle Scholar
  2. 2.
    Cavanagh, D., D.A. Brian, L. Enjuanes, K.V. Holmes, M.M.C. Lai, H. Laude, S.G. Siddell, W. Spaan, Taguchi, and P.J. Talbot. (1990) Virology 176:306–307.PubMedCrossRefGoogle Scholar
  3. 3.
    McKeirnan, A.J., J.F. Evermann, A. Hargis, L.M. Miller, and R.L. Ott. (1981) Feline Pract. 11:16–20.Google Scholar
  4. 4.
    Vennema, H., L. Heijnen, A. Zijderveld, M.C. Horzmek, and W.J.M. Spaan. (1990) J. Tirol. 64:339–346.Google Scholar
  5. 5.
    Laemmli, U.K. (1970) Nature 227:680–685.PubMedCrossRefGoogle Scholar
  6. 6.
    Fuerst, T.R., E.G. Niles, F.W. Studier, and B. Moss. (1986) Proc. Natl. Acari Sci. USA 83:8122–8126.CrossRefGoogle Scholar
  7. 7.
    Vennema, H., L. Heijnen, P.J.M. Rottier, M.C. Horzinek, and W.J.M. Spaan. (1992) J. Viirol. 66:4951–4956.Google Scholar
  8. 8.
    Pelham, H.R.B. (1990) Trends in Biol. Sci. 15:483–486.CrossRefGoogle Scholar
  9. 9.
    Andres, D.A., J.D. Rhodes, R.L. Meisel, and J.E. Dixon. (1991) J. Biol. Chem. 266: 14277–14282.PubMedGoogle Scholar
  10. 10.
    Zagouras, P., and J.K. Rose. (1989) J. Cell Biol. 109:2633–2640.PubMedCrossRefGoogle Scholar
  11. 11.
    Groot, R.J. de, RJ. ter Haar, M.C. Horzinek, and BA.M. van der Zeijst. (1987) J. Gen. Virol. 68:995–1002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • H. Vennema
    • 1
  • L. Heijnen
    • 2
  • P. J. M. Rottier
    • 1
  • M. C. Horzinek
    • 1
  • W. J. M. Spaan
    • 2
  1. 1.Department of Virology, Faculty of Veterinary MedicineUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Department of Virology, Faculty of MedicineUniversity of LeidenThe Netherlands

Personalised recommendations