Advertisement

Genomic Organization and Expression of the 3’ End of the Canine and Feline Enteric Coronaviruses

  • H. Vennema
  • J. W. A. Rossen
  • J. Wesseling
  • M. C. Horzinek
  • P. J. M. Rottier
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 342)

Abstract

The genomic organization at the 3’ end of canine coronavirus (CCV) and feline enteric coronavirus (FECV) was determined by sequence analysis and compared to that of feline infectious peritonitis virus (FIPV) and transmissible gastroenteritis virus (TGEV) of swine. Comparison of the latter two has previously revealed an extra open reading frame (ORF) at the 3’ end of the FIPV genome, lacking in TGEV, now designated ORF 6b. Both CCV and FECV possess 6b-related ORFs. The CCV ORF 6b is colinear with that of FIPV, but the predicted amino acid sequences are only 58% identical. The FECV ORF 6b contains a large deletion compared to that of FIPV, reducing the colinear part to 60%. The sequence homologies were highest between CCV and TGEV on the one hand and between FECV and FIPV on the other. The expression product of the CCV and the FECV ORF 6b can be detected in infected cells by immunoprecipitation.

Keywords

Genomic Organization Predicted Amino Acid Sequence Recombinant Vaccinia Virus Transmissible Gastroenteritis Virus Feline Infectious Peritonitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Siddel, S., Wege, H., and Meulen, V. ter. (1983). J. Gen. Virol. 64, 761–776.CrossRefGoogle Scholar
  2. 2.
    Jacobs, L., Groot, R.J. de, Horzinek, M.C., Zeijst, B.A.M. van der, and Spaan W.J.M. (1987). Virus Res. 8, 363–371.PubMedCrossRefGoogle Scholar
  3. 3.
    Groot, R.J. de, Andeweg, A.C., Horzinek, M.C., and Spaan, W.J.M. (1988). Virology 167, 370–376.PubMedCrossRefGoogle Scholar
  4. 4.
    Vennema, H., Groot, R.J. de, Harbour, D.A., Horzinek, M.C., and Spaan, W.J.M. (1991). Virology 181, 327–335.PubMedCrossRefGoogle Scholar
  5. 5.
    Vennema, H., L. Heijnen, P.J.M. Rottier, M.C. Horzinek, and W.J.M. Spaan. (1992) J. Virol. 66:4951–4956.PubMedGoogle Scholar
  6. 6.
    McKeiman, A.J., Evermann, J.F., Hargis, A., Miller, L.M., and Ott, R.L. (1981). Feline Pract. 11, 16–20.Google Scholar
  7. 7.
    Fuerst, T.R., Niles, E.G., Studier, F.W., and Moss, B. (1986). Proc. Natl. Acad. Sci. USA 83, 8122–8126.PubMedCrossRefGoogle Scholar
  8. 8.
    Kawasaki, E.S., and Wang, A.M. (1989). In PCR technology: Principles and applications for DNA amplification, ed. H.A. Erlich, Stockton Press, New York, 89–97.Google Scholar
  9. 9.
    Devereux, J., Haeberli, P., and Smithies, O. (1984). Nucleic Acids Res. 12, 387–395.PubMedCrossRefGoogle Scholar
  10. 10.
    Vennema, H., Heijnen, L., Zijderveld, A., Horzinek, M.C., and Spaan, W.J.M. (1990). J. Virol. 64, 339–346.PubMedGoogle Scholar
  11. 11.
    Laemmli, U.K. (1970). Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  12. 12.
    Neuberger, A., Gottschalk, A., Marshall, R.O., and Spiro, R.G. (1972). In A. Gottschalk (ed.), The glycoproteins: Their composition, structure and function., Elsevier, Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • H. Vennema
    • 1
  • J. W. A. Rossen
    • 1
  • J. Wesseling
    • 1
  • M. C. Horzinek
    • 1
  • P. J. M. Rottier
    • 1
  1. 1.Department of Virology, Faculty of Veterinary MedicineUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations