Advertisement

Characterization of the Nonstructural and Spike Proteins of the Human Respiratory Coronavirus OC43: Comparison with Bovine Enteric Coronavirus

  • Samir Mounir
  • Patrick Labonté
  • Pierre J. Talbot
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 342)

Abstract

The nucleotide sequence of the region between the spike (S) and the membrane (M) protein genes, and sequences of the S and ns2 genes of the OC43 strain of human coronavirus (HCV-OC43) were determined. The ns2 gene comprises an open reading frame (ORF) encoding a putative nonstructural (ns) protein of 279 amino acids with a predicted molecular mass of 32-kDa. The S gene comprises an ORF encoding a protein of 1353 amino acid residues, with a predicted molecular weight of 149,918. Sequence comparison between HCV-OC43 and the antigenically related bovine coronavirus (BCV) revealed more sequence divergence in the putative bulbous part of the S protein (S1) than in the stem region (S2). The cysteine residues near the transmembrane domain and the internal predicted protease cleavage site are conserved in the HCV-OC43 S protein. Nucleotide sequence analysis of the region between the S and M gene loci revealed the presence of an unexpected intragenomic partial leader sequence and two ORFs encoding potential proteins of 12.9 and 9.5-kDa. These two proteins were identified as nonstructural by comparison with the homologous BCV genes. In vitro translation analyses demonstrated that the HCV-OC43 9.5-kDa protein, like its BCV counterpart, is poorly translated when situated downstream of the 12.9-kDa ORF, but is expressed in infected cells, as shown by immunofluorescence. Interestingly, two ORFs, potentially encoding 4.9 and 4.8-kDa ns proteins in BCV are absent in HCV-OC43, indicating that they are not essential for viral replication in HRT-18 cells.

Keywords

Amino Acid Sequence Identity Nonstructural Protein Mouse Hepatitis Virus Polyclonal Rabbit Antiserum Spike Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Spaan, D. Cavanagh, and M.C. Horzinek. In: “Immunochemistry of viruses, II. The basis for serodiagnosis and vaccines”. M.H.V. van Regenmortel and A.R. Neurath, eds., p. 359, Elsevier, New York (1990).Google Scholar
  2. 2.
    K.V. Holmes. In: “Virology, 2nd edn.”, B.N. Fields, D.M. Knipe et al., eds., p. 841, Raven Press, New York (1990).Google Scholar
  3. 3.
    H. Wege, S. Siddell, and V. ter Meulen. Curr. Top. Microbiol. Immunol. 99: 165 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    M.M.C. Lai. Annu. Rev. Microbiol. 44: 303 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    B.G. Hogue, B. King, and D.A. Brian. J. Virol. 51: 384 (1984).PubMedGoogle Scholar
  6. 6.
    B.G. Hogue, and D.A. Brian. Virus Res. 5: 131 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    X.M. Zhang, K.G. Kousoulas, and J. Storz. Virology 186: 318 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Mounir, and P.J. Talbot. J. Gen. Virol. 73: 2731 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    T. Kamahora, L.H. Soe, and M.M.C. Lai. Virus Res. 12: 1 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Southern. Methods Enzymol. 69: 152 (1979).CrossRefGoogle Scholar
  11. 11.
    M. Cogné, S. Mounir, J.L. Preud’homme, F. Nau, and P. Guglielmi. Eur. J. Immunol. 18: 1485 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    J.L. Leibowitz, S. Perlman, G. Weinstock, J.R. DeVries, C. Budzilowicz, J.M. Weissemann, and S.R. Weiss. Virology 164: 156 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Abraham, T.E. Kienzle, W.E. Lapps, and D.A. Brian. Virology 177: 488 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Kozak. J. Cell Biol. 108: 229 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    G.J. Cox, M.D. Parker, and L.A. Babiuk. Nucl. Acids Res. 17: 5847 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Abraham, T.E. Kienzle, W. Lapps, and D.A. Brian. Virology 176: 296 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    C.J. Budzilowicz, and S.R. Weiss. Virology 157: 509 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    D.X. Liu, and S.C. Inglis. Virology 185: 911 (1991).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Godet, R. L’Haridon, J.-F Vautherot, and H. Laude. Virology 188: 666 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    B. Schwarz, E. Routledge, and S.G. Siddell. J. Virol. 64: 4784 (1990).PubMedGoogle Scholar
  21. 21.
    K. Yokomori, and M.M.C. Lai. J. Virol. 65: 5605 (1991).PubMedGoogle Scholar
  22. 22.
    D. Rasschaert, M. Duarte, and H. Laude. J. Gen. Virol. 71: 2599 (1990).PubMedCrossRefGoogle Scholar
  23. 23.
    T.M. Gallagher, S.E. Parker, and M.J. Buchmeier. J. Virol. 64: 731 (1990).PubMedGoogle Scholar
  24. 24.
    G. Gerna, N. Passarani, M. Battaglia, and E.G. Rondanelli. J. Inf. Dis. 151: 796 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Samir Mounir
    • 1
  • Patrick Labonté
    • 1
  • Pierre J. Talbot
    • 1
  1. 1.Centre de Recherche en Virologie, Institut Armand-FrappierUniversité du QuébecLavalCanada

Personalised recommendations