Membrane Cycling between the ER and Golgi Apparatus and Its Role in Biosynthetic Transport

  • Jennifer Lippincott-Schwartz
Part of the Subcellular Biochemistry book series (SCBI, volume 21)


Selective localization and transport of protein and lipid within eukaryotic cells requires the proper functioning of an intercommunicating “endomembrane” system characterized by distinct membrane-bound compartments and membrane transport pathways. Two organelles that play a key role in the generation and maintenance of this endomembrane system, as well as in membrane targeting within it, are the ER and Golgi apparatus. All newly synthesized proteins enter the endomembrane system in the ER and only move to different final destinations in the cell after passing through the Golgi apparatus. This fundamental relationship between the ER and Golgi apparatus in the regulation and sorting events of biosynthetic transport was first recognized in the 1960s (Palade, 1975). Only recently, however, has insight into the underlying mechanisms of membrane traffic between the ER and Golgi apparatus been achieved, because of the development of new biochemical, pharmacologie, genetic, and morphologic approaches.


Endoplasmic Reticulum Golgi Apparatus Golgi Complex Retrograde Transport Golgi Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allan. V. J., and Kreis. T. E., 1986. A microtubule-binding protein associated with membranes of the Golgi apparatus. J. Cell Biol. 103:2229–2239.PubMedCrossRefGoogle Scholar
  2. Baker. D., Hicke. L., Rexach. M., Schleyer. M., and Schekman. R., 1988. Reconstitution of SEC gene product-dependent intercompartmental protein transport. Cell 54:335–344.PubMedCrossRefGoogle Scholar
  3. Beckers. C. J., Keller. D. S., and Balch. W. E., 1987. Semi-intact cells permeable to macromolecules: Use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell 50:523–534.PubMedCrossRefGoogle Scholar
  4. Bole. D. G., Dowin. R., Doriaux. M., and Jamieson. J. D., 1989. Immunocytochemical localization of BiP to the rough endoplasmic reticulum: Evidence for protein sorting by selective retention. J. Histochem. Cytochem. 37:1817–1823.PubMedCrossRefGoogle Scholar
  5. Bonatti. S., Migliaccio. G., and Simons. K., 1989. Palmitylation of viral membrane glycoproteins takes place after exit from the ER. J. Biol. Chem. 264:12590–12595.PubMedGoogle Scholar
  6. Bonifacino. J. S., and Lippincott-Schwartz. J., 1991. Degradation of proteins within the endoplasmic reticulum. Curr. Opin. Cell Biol. 3:592–600.PubMedCrossRefGoogle Scholar
  7. Booth. C and Koch. L. E., 1990. Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 59:729–737.CrossRefGoogle Scholar
  8. Chavrier. P., Parton, R. G., Hauri. H.-P., Simons. K., and Zerial. M., 1990. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62:317–329.PubMedCrossRefGoogle Scholar
  9. Clary, D. O., Griff. I. C. and Rothman. J. E., 1990. SNAPs. a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61:709–721.PubMedCrossRefGoogle Scholar
  10. Cooper. M. S., Cornell-Bell. A. H., Chernjavsky. A., Dani. J. W., and Smith. S. J., 1990. Tubulovesicular processes emerge from trans-Golgi cisternae. extend along microtubules. and interlink adjacent trans-Golgi elements into a reticulum. Cell 61:135–145.PubMedCrossRefGoogle Scholar
  11. Dabora. S. L., and Sheetz. M. P., 1988. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell 54:27–35.PubMedCrossRefGoogle Scholar
  12. d’Enfert, C. Wuestehube, L. J., Lila, T., and Schekman, R., 1991. Sec 12p-dependent membrane binding of the small GTP-binding protein sarlp promotes formation of transport vesicles from the ER. J. Cell Biol. 114:663–670.CrossRefGoogle Scholar
  13. Doms, R. W., Russ, G., and Yewdell, J. W., 1989. Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J. Cell Biol. 109:61–72.PubMedCrossRefGoogle Scholar
  14. Donaldson, J. G., Lippincott-Schwartz, J., Bloom, G. S., Kreis, T. E., and Klausner, R. D., 1990. Dissociation of a 110 kD peripheral membrane protein from the Golgi apparatus is an early event in brefeldin A action. J. Cell Biol. 111:2295–2306.PubMedCrossRefGoogle Scholar
  15. Donaldson, J. G., Lippincott-Schwartz, J., and Klausner, R. D., 1991a. Guanine nucleotides modulate the effects of brefeldin A in semipermeable cells: Regulation of the association of a 110 kD peripheral membrane protein with the Golgi apparatus. J. Cell Biol. 112:579–588.PubMedCrossRefGoogle Scholar
  16. Donaldson, J. G., Kahn, R. A., Lippincott-Schwartz, J., and Klausner, R. D., 1991b. Binding of ARF and βCOP to Golgi membranes: Possible regulation by a trimeric G protein. Science 254:1197–1199.PubMedCrossRefGoogle Scholar
  17. Donaldson, J. G., Cassel, D., Kahn, R. A., and Klausner, R. D., 1992. ADP-ribosylation factor, a small GTP-binding protein is required for binding of the coatomer protein βCop to Golgi membranes. Proc. Nat’l Acad. Sci., 89:6408–6412.CrossRefGoogle Scholar
  18. Duden, R., Griffiths, G., Frank, R., Argos, P., and Kreis, T. E., 1991. β-COP. a 110 kD protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to β-adaptin. Cell 64:649–665.PubMedCrossRefGoogle Scholar
  19. Fitting, T., and Kabat, D., 1982. Evidence for a glycoprotein “signal” involved in transport between subcellular organelles. Two membrane glycoproteins encoded by murine leukemia virus reach the cell surface at different rates. J. Biol. Chem. 257:14011–14017.PubMedGoogle Scholar
  20. Franzusoff, A., Lauze, E., and Howell, K. E., 1992. Immuno-isolation of sec 7p-coated transport vesicles from the yeast secretory pathway. Sature 355:173–175.Google Scholar
  21. Fujiwara, T., Oda, K., and Ikehara, Y., 1989. Dynamic distribution of the Golgi marker thiamine pyrophosphatase is modulated by brefeldin A in rat hepatoma cells. Cell Struct. Funct. 14:605–616.PubMedCrossRefGoogle Scholar
  22. Geuze, H. J., Slot, J. W., Strous, G. J., Lodish, H. F., and Schwartz, A. L., 1983. Intracellular site of asialoglycoprotein receptor-ligand uncoupling: Double label immuno-electron microscopy during receptor-mediated endocytosis. Cell 32:277–287.PubMedCrossRefGoogle Scholar
  23. Griffiths, G., and Simons, K., 1986. The trans Golgi network: Sorting at the exit site of the Golgi complex. Science 234:438–443.PubMedCrossRefGoogle Scholar
  24. Groesch, M., Ruohola, H., Bacon, R., Rossi, G., and Ferro-Novick, S., 1990. Isolation of a functional vesicular intermediate that mediates ER to Golgi transport in yeast. J. Cell Biol. 111:45–53PubMedCrossRefGoogle Scholar
  25. Hicke, L., Yoshihisa, T. and Schekman, R., 1992. Sec 23p and a novel 105-kDa protein function as a multimeric complex to promote vesicle budding and protein transport from the endoplasmic reticulum. Mol. Biol. Cell 3:667–676.PubMedGoogle Scholar
  26. Helenius, A., Tatu, U., Marquardt, T., and Braakman, I., 1993. Protein folding in the endoplasmic reticulum. Serono Symposium (in press).Google Scholar
  27. Hicke, L., and Schekman, R., 1990, Molecular machinery required for protein transport from the endoplasmic reticulum to the Golgi complex, Bioessays 12:253–258.PubMedCrossRefGoogle Scholar
  28. Hauri, H-P., and Schweizer, A., 1992, The endoplasmic reticulum-Golgi intermediate compartment, Curr. Opin. Cell Biol. 4:600–608.PubMedCrossRefGoogle Scholar
  29. Ho, W. C. Allan, V. J., van Meer, G., and Kreis, T. E., 1989, Redistribution of scattered Golgi elements occurs along microtubules, Eur, J. Cell Biol. 48:250–263.Google Scholar
  30. Hoffman, P. M., and Pagano, R. E., 1993, Retrograde movement of membrane lipids from the Golgi apparatus to the endoplasmic reticulum of perforated cells: Evidence for lipid recycling, Eur, J. Cell Biol. (in Press).Google Scholar
  31. Hsu, V. W., Yuan, L. C., Nüchtern, J. G., Lippincott-Schwartz, J., Hammerling, G. J., and Klausner, R. D., 1991, A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class 1 molecules, Nature 352:441–444.PubMedCrossRefGoogle Scholar
  32. Hsu, V. W., Shah, N., and Klausner, R. D., 1992, A brefeldin A-like phenotype is induced by the overexpression of a human ERD-2-like protein, ELP-1, Cell 69:625–635.PubMedCrossRefGoogle Scholar
  33. Jackson, M. R., Nilsson, T., and Peterson, P. A., 1990, Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum, EMBO J. 9:3153–3162.PubMedGoogle Scholar
  34. Kachar, J., and Reese, T., 1988, The mechanism of cytoplasmic streaming in characean algal cells: Sliding of endoplasmic reticulum along actin filaments, J. Cell Biol. 106:1545–1552.PubMedCrossRefGoogle Scholar
  35. Kahn, R. A., 1991, Fluoride is not an activator of the smaller (20-25KDa) GTP-binding proteins, J. Biol. Chem. 266:15595–15597.PubMedGoogle Scholar
  36. Kaiser, C. A., and Schekman, R., 1990, Distinct sets of SEC genes govern transport vesicle formation and fusion in the secretory pathway, Cell 61:723–733.PubMedCrossRefGoogle Scholar
  37. Klausner, R. D., 1989, Architectural editing: Determining the fate of newly synthesized membrane proteins, New Biol. 1:3–8.PubMedGoogle Scholar
  38. Klausner, R. D., Donaldson, J. G., and Lippincott-Schwartz, J., 1992, Brefeldin A: Insights into the control of membrane traffic and organelle structure, J. Cell Biol. 116:1071–1080.PubMedCrossRefGoogle Scholar
  39. Kornfeld, S., and Mellman, I., 1989, The biogenesis of lysosomes, Annu. Rev. Cell Biol. 5:483–525.PubMedCrossRefGoogle Scholar
  40. Kupfer, A. D., and Singer, S. J., 1982, Polarization of the Golgi apparatus and the microtubule organizing center in cultured fivroblasts at the edge of an experimental wound. Proc. Nat’l Acad. Sci. USA 79:2603–2607.CrossRefGoogle Scholar
  41. Ktistakis, N. T., Linder, M. E., and Roth, M. G., 1992, Action of brefeldin A blocked by activation of pertussis-toxin-sensitive G protein, Nature 356:344–346.PubMedCrossRefGoogle Scholar
  42. Lewis, M. J., Sweet, D. J., and Pelham, H.R.B., 1990, The ERD2 gene determines the specificity of the luminal ER protein retention system, Cell 61:1359–1363.PubMedCrossRefGoogle Scholar
  43. Lippincott-Schwartz, J., Yuan, L. C., Bonifacino, J. S., and Klausner, R. D., 1989, Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER, Cell 56:801–813.PubMedCrossRefGoogle Scholar
  44. Lippincott-Schwartz, J., Donaldson, J. G., Schweizer, A., Berger, E. G., Hauri, H.-P., Yuan, L. C., and Klausner, R. D., 1990, Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway, Cell 60:821–836.PubMedCrossRefGoogle Scholar
  45. Lippincott-Schwartz, J., Yuan, L., Tipper, C., Amherdt, M., Orci, L., and Klausner, R. D., 1991, Brefeldin A’s effects on endosomes, lysosomes and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic, Cell 67:601–616.PubMedCrossRefGoogle Scholar
  46. Lodish, H. F., Kong, N., Snider, M., and Strous, G. J., 1983, Hepatoma secretory proteins migrate from the rough endoplasmic reticulum to Golgi at characteristic rates, Nature 304:80–93.PubMedCrossRefGoogle Scholar
  47. Lodish, H. F., Kong, N., Hirani, S., and Rasmussen, J., 1987, A vesicular intermediate in the transport of hepatoma secretory proteins from the rough ER to the Golgi complex, J. Cell Biol. 104:221–230.PubMedCrossRefGoogle Scholar
  48. Lucocq, J. M., Berger, E. G., and Warren, G., 1989. Mitotic Golgi fragments in HeLa cells and their role in the reassembly pathway, J. Cell Biol. 109:463–474.PubMedCrossRefGoogle Scholar
  49. Machamer, C. E., Mentone, S. A., Rose, J. K., and Farquhar, M. G., 1990, The El glycoprotein of an avian Coronavirus is targeted to the cis Golgi complex, Proc. Notl. Acad. Sci. USA 87:6944–6948.CrossRefGoogle Scholar
  50. Malhotra, V., Serafini, T., Orci, L., Shepherd, J. C., and Rothman, J. E., 1989, Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 58:329–336.PubMedCrossRefGoogle Scholar
  51. Mellman, I., and Simons, K., 1992. The Golgi complex: In vitro veritas? Cell 68:829–840.PubMedCrossRefGoogle Scholar
  52. Misumi, Y., Miki, K., Takatsuki, A., Tamura, G., and Ikehara, Y., 1986, Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes, J. Biol. Chem. 261:11398–11403.PubMedGoogle Scholar
  53. Munro, S., and Pelham, H.R.B., 1987, A C-terminal signal prevents secretion of luminal ER proteins, Cell 48:899–907.PubMedCrossRefGoogle Scholar
  54. Nakano, A., and Muramatsu, M., 1989, A novel GTP-binding protein Sarlp is involved in transport from the ER to the Golgi apparatus, J. Cell Biol. 109:2677–2691.PubMedCrossRefGoogle Scholar
  55. Newman, A. P., and Ferro-Novick, S., 1987, Characterization of new mutants in the early part of the yeast secretory pathway isolated by [3H]mannose suicide selection, J. Cell Biol. 105:1587–1594.PubMedCrossRefGoogle Scholar
  56. Orci, L., Ravazzola, M., Meda, P., Holcomb, C., Moore, H.-P., Hicke, L., and Schekman, R., 1991a, Mammalian sec 23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm, Proc. Natl. Acad. Sci. USA 88:8611–8615.PubMedCrossRefGoogle Scholar
  57. Orci, L., Tagaya, M., Amherdt, M., Perrelet, A., Donaldson, J. G., Lippincott-Schwartz, J., Klausner, R. D., and Rothman, J. E., 1991b, Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae, Cell 64:1183–1195.PubMedCrossRefGoogle Scholar
  58. Palade, G. E., 1975, Intracellular aspects of the process of protein secretion, Science 189:347–358.PubMedCrossRefGoogle Scholar
  59. Palade, G. E., and Siekevitz, P., 1956, Liver microsomes. An integrated morphological and biochemical study, J. Biophys. Biochem. Cytol. 2:171–200.PubMedCrossRefGoogle Scholar
  60. Paulik, M., Nowack, D. D., and Morre, D. J., 1988, Isolation of a vesicular intermediate in the cellfree transfer of membrane from transitional elements of the endoplasmic reticulum to Golgi apparatus cisternae of rat liver, J. Biol. Chem. 263:17738–17748.PubMedGoogle Scholar
  61. Pelham, H.R.B., 1988, Evidence that luminal ER proteins are sorted from secreted proteins in a postER compartment, EMBO J. 7:913–918.PubMedGoogle Scholar
  62. Pelham, H.R.B., 1990, The retention signal for luminal ER proteins, Trends Biochem. Sci. 15:483–486.PubMedCrossRefGoogle Scholar
  63. Pelham, H.R.B., 1991, Recycling of proteins between the endoplasmic reticulum and Golgi complex, Curr. Opin. Cell Biol. 3:585–591.PubMedCrossRefGoogle Scholar
  64. Pfeffer, S. R., and Rothman, J. E., 1987, Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi, Annu. Rev. Biochem. 56:829–852.PubMedCrossRefGoogle Scholar
  65. Plutner, H., Cox, A. D., Pind, S., Khosravi-Far, R., Bourne, J. R., Schwaninger, R., Der, C. J., and Balch, W. E., 1991, Rablb regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments, J. Cell Biol. 115:31–43.PubMedCrossRefGoogle Scholar
  66. Poruchynsky, M. S., and Atkinson, P. H., 1988, Primary sequence domains required for the retention of rotovirus VP7 in the endoplasmic reticulum, J. Cell Biol. 107:1697–1706.PubMedCrossRefGoogle Scholar
  67. Pryer, N. K., Salama, N. R., Kaiser, C. A., and Schekman, R., 1990, Yeast sec 13p is required in cytoplasmic form for ER to Golgi transport in vitro, J. Cell Biol. 111:325a.Google Scholar
  68. Rambourg, A., and Clermont, Y., 1990, Three-dimensional electron microscopy: Structure of the Golgi apparatus, Eur, J. Cell Biol. 51:189–200.Google Scholar
  69. Rexach, M. F., and Schekman, R. W., 1991, Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles, J. Cell Biol. 114:219–229.PubMedCrossRefGoogle Scholar
  70. Rizzolo, L. J., and Kornfeld, R., 1988. Post-translational protein modification in the endoplasmic reticulum. Demonstration of fatty acylase and doxymannoiirimycin-sensitive alphamannosidase activities. J. Biol. Chem. 263:9520–9525.PubMedGoogle Scholar
  71. Rogalski, A., Bergmann, J., and Singer, S. J., 1984. Effect of microtubule assembly status on the intracellular processing and expression of an integral protein of the plasma membrane. J. Cell Biol. 99:1101–1109.PubMedCrossRefGoogle Scholar
  72. Rose, J. K., and Bergmann, J. E., 1983. Altered cytoplasmic domains affect intracellular transport of vesicular stomatitis virus glycoprotein. Cell 34:513–524.PubMedCrossRefGoogle Scholar
  73. Rothman, J. E., and Orci, L., 1990. Movement of proteins through the Golgi stack: A molecular dissection of vesicular transport. FASEB J. 4:1460–1468.PubMedGoogle Scholar
  74. Rothman, J. E., and Orci, L., 1992, Molecular dissection of the secretory pathway. Nature 355:409–415.PubMedCrossRefGoogle Scholar
  75. Ruohola, H., Kabcenell, A. K., and Ferro-Novick, S., 1988, Reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex in yeast: The acceptor Golgi compartment is defective in sec 23 mutant, J. Cell Biol. 107:1465–1476.PubMedCrossRefGoogle Scholar
  76. Saraste, J., and Kuismanen, E., 1984. Pre-and post-Golgi vacuoles operate in the transport of Semliki forest virus membrane glycoproteins to the cell surface. Cell 38:535–549.PubMedCrossRefGoogle Scholar
  77. Saraste, J., and Svensson, K., 1991, Distribution of the intermediate elements operating in Er to Golgi transport, J. Cell Sci. 100:415–430.PubMedGoogle Scholar
  78. Saraste, J., Palade, G. E., and Farquhar, M. G., 1987. Antibodies to rat pancrease Golgi subtractions: Identification of a 58-kD cis-Golgi protein. J. Cell Biol. 105:2021–2029.PubMedCrossRefGoogle Scholar
  79. Schekman, R., 1992, Genetic and biochemical analysis of vesicular traffic in yeast, Curr. Opin. Cell Biol. 4:587–592.PubMedCrossRefGoogle Scholar
  80. Schweizer, A., Fransen, J.A.M., Bachchi, T., Ginsel, L., and Hauri, H. P., 1988, Identification, by a monoclonal antibody, of a 53 kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus, J. Cell Biol. 107:1643–1653.PubMedCrossRefGoogle Scholar
  81. Schweizer, A., Fransen, J., Matter, K., Kreis, T. E., Ginsel, L., and Hauri, H. P., 1990, Identification of an intermediate compartment involved in protein transport from ER to Golgi apparatus, Eur, J. Cell Biol. 53:185–196.Google Scholar
  82. Schweizer, A., Matter, K., Ketcham, C. M., and Hauri, H. P., 1991, The isolated ER-Golgi intermediate compartment exhibits properties that are different from ER and cis-Golgi, J. Cell Biol. 113:45–54.PubMedCrossRefGoogle Scholar
  83. Segev, N., Mulholland, J., and Botstein, D., 1988, The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery, Cell 52:915–924.PubMedCrossRefGoogle Scholar
  84. Semenza, J. C., Hardwick, K. G., Dean, N., and Pelham, H.R.B., 1990, ERD 2, a gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway, Cell 61:1349–1357.PubMedCrossRefGoogle Scholar
  85. Serafini, T, Stenbeck, G., Brecht, A., Lottspeich, F., Orci, L., Rothman, J. E., and Wieland, F. T., 1991, A coat subunit of Golgi-derived nonclathrin-coated vesicles with homology to the clathrin-coated vesicle coat protein β-adaptin, Nature 349:215–220.PubMedCrossRefGoogle Scholar
  86. Shim, J., Newman, A. P., and Ferro-Novick, S., 1991, The BOS1 gene encodes an essential 27 kD putative membrane protein that is required for vesicle transport from the ER to the Golgi complex in yeast, J. Cell Biol. 113:55–64.PubMedCrossRefGoogle Scholar
  87. Stow, J. L., de Almeida, J. B., Narula, N., Holtzman, E. J., Ercolani, L., Ausiello, D. A., 1991, A heterotrimeric G protein, G alphai-3, on Golgi membranes regulates the secretion of a heparan proteoglycan in LLC-PKI epithelial cells. J. Cell Biol. 114:1113–1124.PubMedCrossRefGoogle Scholar
  88. Strous, G. J., Berger, E. G., van Kerkhof, P., Bosshart, H., Berger, B., and Geuze, H. J., 1991, Brefeldin A induces a microtubule-dependent fusion of galactosyltransferase-containing vesicles with the rough endoplasmic reticulum, J. Biol. Cell. 71:25–31.CrossRefGoogle Scholar
  89. Sweet, D. J., and Pelham, H.R.B., 1992. The Saccharomyces cerevisiae SEC 20 gene encodes a membrane glycoprotein which is sorted by the HDEL retrieval system, EMBO. J. 11:423–432.PubMedGoogle Scholar
  90. Tassin, A. M., Paintrand, M., Berger, E. G., and Bornens, M., 1985. The Golgi apparatus remains associated with the microtubule organizing center during myogenesis. J. Cell Biol. 101:630–638.PubMedCrossRefGoogle Scholar
  91. Terasaki, M., and Jaffe, L. A., 1991, Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization. J. Cell Biol. 114:929–940.PubMedCrossRefGoogle Scholar
  92. Terasaki, M., and Sardet, 1991, Demonstration of calcium uptake and release by sea urchin egg cortical endoplasmic reticulum, J. Cell Biol. 115:1031–1037.PubMedCrossRefGoogle Scholar
  93. Terasaki, M., Chen, L. B., and Fujiwara, K., 1986, Microtubules and the endoplasmic reticulum are highly interdependent structures. J. Cell Biol. 103:1557–1568.PubMedCrossRefGoogle Scholar
  94. Thyberg, J., and Moskalewski, S., 1985, Microtubules and the organization of the Golgi complex. Exp. Cell Res. 159:1–16.PubMedCrossRefGoogle Scholar
  95. Tooze, J., Tooze, S. A., and Warren, G., 1988. Site of addition of N-acetyl-galactosamine to the El glycoprotein of mouse hepatitis virus-A59. J. Cell Biol. 106:1475–1487.PubMedCrossRefGoogle Scholar
  96. Turner, J. R., and Tartakoff, A. M., 1989, The response of the Golgi complex to microtubule alterations: The roles of metabolic energy and membrane traffic in Golgi complex organization, J. Cell Biol. 109:2081–2088.PubMedCrossRefGoogle Scholar
  97. Ulmer, J. B., and Palade, G. E., 1991, Effects of brefeldin A on the Golgi complex, endoplasmic reticulum and viral envelope glycoproteins in murine erythroleukemia cells, Eur, J. Cell Biol. 54:38–54.Google Scholar
  98. Vaux, D., Tooze, J., and Fuller, S. D., 1990, Identification by anti-idiotypic antibodies of an intracellular membrane protein that recognizes a mammalian endoplasmic reticulum signal. Nature 345:495–501.PubMedCrossRefGoogle Scholar
  99. Wieland, F. T., Gleason, M. L., Serafinik, T. A., and Rothman, J. E., 1987, The rate of bulk flow from the endoplasmic reticulum to the cell surface, Cell 50:289–300.PubMedCrossRefGoogle Scholar
  100. Wilgram, G. F., and Kennedy, E. P., 1963, Intracellular distribution of some enzymes catalyzing reactions in the biosynthesis of complex lipids, J. Biol. Chem. 238:2615–2619.PubMedGoogle Scholar
  101. Williams, D. B., Swiedler, S. J., and Hart, G. W., 1985, Intracellular transport of membrane glycoproteins: Two closely related histocompatibility antigens differ in their rates of transit to the cell surface, J. Cell Biol. 101:725–734.PubMedCrossRefGoogle Scholar
  102. Wilson, D. W., Wilcox, C. A., Flynn, G. C., Chen, E., Kuang, W.-J., Henzel, W. J., Block, M. R., Ullrich, A., and Rothman, J. E., 1989, A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast, Nature 339:355–359.PubMedCrossRefGoogle Scholar
  103. Young, W. W., Lutz, M. S., Mills, S. E., and Lechler-Osborn, S., 1990, Use of brefeldin A to define sites of glycosphingolipid synthesis: GA2/GM2/GD2 synthase is trans to the brefeldin A block, Proc. Natl. Acad. Sci. USA 87:6838–6842.PubMedCrossRefGoogle Scholar
  104. Zagouras, P., and Rose, J. K., 1989, Carboxy-terminal SEKDEL sequences retard but do not retain two secretory proteins in the ER, J. Cell Biol. 109:2633–2640.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Jennifer Lippincott-Schwartz
    • 1
  1. 1.Cell Biology and Metabolism Branch, National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA

Personalised recommendations