Advertisement

Relaxational Liquid Epitaxy with Reverse Mass Transport and Its Potential for Preparing Thin Films of A3B5 Semiconductors

  • V. N. Bessolov
  • S. G. Konnikov
  • S. A. Kukushkin
  • M. V. Lebedev
  • E. B. Novikov
  • K. Yu. Pogrebitskii
  • B. V. Tsarenkov
Chapter
Part of the Growth of Crystals book series (GROC, volume 19)

Abstract

Technologies capable of growing semiconducting heterostructures as thin films (∼100Å ) are necessary to the development of semiconducting quantum-size electronics. Such structures are presently fabricated mainly by molecular-beam epitaxy and gas-phase epitaxy from organometallic compounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Nelson, “Epitaxial growth from the liquid state and its application to the fabrication of tunnel and laser diodes,” RCA Rev., 24, 603–615 (1963).Google Scholar
  2. 2.
    E. A. Rezek, N. Holonyak, Jr., B. A. Vojak, et al., “LPE In1-xGaxP1-zAsz (x∼0.12 z,∼ 0.26) DH laser with multiple thin-layer (< 500 Å) active regions,” Appl, Phys. Lett., 31, No. 4, 288–290 (1977).CrossRefGoogle Scholar
  3. 3.
    I. N. Arsent’ev, D. Z. Garbuzov, S. G. Konnikov, et al., “X-ray photoemission study of liquid-phase-epitaxial InGaAsP heterostructures with a ≥ 20 Å transition layer,” Fiz. Tekh. Poluprovodn. (Leningrad), 20, No. 12, 2206–2211 (1986).Google Scholar
  4. 4.
    Zh. I. Alferov, V. M. Andreev, A. A. Vodnev, et al, “Low-threshold (j = 230 A/cm2, T= 300 K) GaAlAs double-heterostructure injection lasers prepared by liquid-phase epitaxy,” Fiz. Tekh. Poluprovodn. (Leningrad), 20, No. 2, 381–383 (1986).Google Scholar
  5. 5.
    V. N. Bessolov, S. A. Kukushkin, M. V. Lebedev, and B. V. Tsarenkov, “Relaxational liquid phase epitaxy based on reversal of the mass transport and its potential for making ultrathin layers of III-V materials,” Zh. Tekh. Fiz., 58, No. 8, 1507–1512 (1988).Google Scholar
  6. 6.
    Ya. B. Zel’dovich, “Toward a theory of the formation of a new phase. Cavitation,” Zh. Eksp. Teor. Fiz., 12, No. 11/12, 525–538 (1942).Google Scholar
  7. 7.
    M. Vollmer, Kinetik der Phasenbildung, Theodor Steinkopff, Dresden (1939).Google Scholar
  8. 8.
    S. Toshev and I. Gutsov, “Time lag in heterogeneous nucleation due to nonstationary effects,” Phys. Status Solidi, 21, No. 2, 683–691 (1967).CrossRefGoogle Scholar
  9. 9.
    Ya. I. Frenkel’ Introduction to the Theory of Metals[in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  10. 10.
    Ya. I. Frenkel’, Kinetic Theory of Liquids [in Russian], Izd. Akad. Nauk SSSR, Moscow and Leningrad (1945).Google Scholar
  11. 11.
    M. B. Small and I. Crossley, “The physical processes occurring during liquid phase epitaxial growth,” J. Cryst. Growth, 27, 35–48 (1974).Google Scholar
  12. 12.
    R. M. Potemski and M. B. Small, “Contact angles between (GaAl)As solid and solutions,” J.Cryst. Growth, 62, No. 2, 317–319 (1983).CrossRefGoogle Scholar
  13. 13.
    V. König and W. Keck, “Contact angles between III-V melts and several substrates,” J. Electrochem. Soc., 130, No. 3, 685–686 (1983).CrossRefGoogle Scholar
  14. 14.
    R. N. Hall, “Solubility of III-V compound semiconductors in column III liquids,” J. Electrochem. Soc., 110, No. 2, 385–388 (1963).CrossRefGoogle Scholar
  15. 15.
    J. J. Hsieh, “Thickness and surface morphology of GaAs LPE layers grown by supercooling, step-cooling, equilibrium-cooling, and two-phase solution techniques,” J. Cryst. Growth, 27, 49–61 (1974).Google Scholar
  16. 16.
    V. M. Andreev, L. M. Dolginov, and D. N. Tret’yakov, Liquid Epitaxy in Industry [in Russian], Sov, Radio, Moscow (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York  1993

Authors and Affiliations

  • V. N. Bessolov
  • S. G. Konnikov
  • S. A. Kukushkin
  • M. V. Lebedev
  • E. B. Novikov
  • K. Yu. Pogrebitskii
  • B. V. Tsarenkov

There are no affiliations available

Personalised recommendations