Vibrational Convection During the Growth of Crystals

  • E. V. Zharikov
  • L. V. Prikhod’ko
  • N. R. Storozhev
Part of the Growth of Crystals book series (GROC, volume 19)


The effect of vibrations on the growth of a crystal has been the subject of many investigations (for example, [1–18]. Experimental data have been obtained regarding the influence of vibrations on the nature of the growth and such parameters and properties of single crystals as the rate of nucleation and crystal growth [1–4], the shape of a freely growing crystal [3, 8], the incorporation of impurities into a crystal [10, 11, 19, 20], its local inhomogeneity [9], and the dislocation density in a crystal [16]. These effects are evident to various degrees over a wide range of intensities and frequencies. The influence on the growth of crystals of vibrations in the ultrasonic (from tens of kHz to several MHz) [1–3,18,19], acoustic (usually tens to hundreds of Hz) [4, 5, 8–11, 16, 17], and even subsonic ranges (from 0.5 to 5 Hz) [6, 7, 15] has been investigated. The displacement amplitudes are usually confined to several micrometers for ultrasound [18] and reach 10–25 mm in experiments on the influence of subsound [6, 7].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Danilov, Structure and Crystallization of a Liquid: A Collection of Articles [in Russian], Izd. Akad. Nauk SSSR, Kiev (1956).Google Scholar
  2. 2.
    A. P. Kapustin, Effect of Ultrasound on Crystallization Kinetics [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962).Google Scholar
  3. 3.
    Kh. S. Bagdasarov, Application of Ultrasound in Industry [in Russian], Mashgiz, Moscow (1959).Google Scholar
  4. 4.
    A. S. Borshchevskii and D. N. Tret’yakov, “Synthesis of semiconducting materials using vibrational stirring,” Fiz. Tverd. Tela, 1, No. 9, 1483–1485 (1959).Google Scholar
  5. 5.
    A. P. Izergin, Yu. S. Pavlenko, and S. A. Stroitelev, “On the effect of vibrations on the shape of Czochralski-grown single crystals,” Izv. Vyssh. Uchebn. Zaved., Ser. Fiz. No. 1, 107–109 (1959).Google Scholar
  6. 6.
    T. G. Petrov, “Method of growing single crystals,” USSR Pat. No. 136,057.Google Scholar
  7. 7.
    V. Sip and V. Vanisek, “New items of equipment for the production of monocrystals,” in: Growth of Crystals, Vol. 3, A. V. Shubnikov and N. N. Sheftal’ (eds.), Consultants Bureau, New York (1962), pp. 191–195.Google Scholar
  8. 8.
    B. Langanecker and W. H. Fransen, “The influence of sound waves on the growth of zinc single crystals,” Philos. Mag., 7, No. 84, 2079–2085 (1962).CrossRefGoogle Scholar
  9. 9.
    G. V. Nikitina, V. N. Romanenko, and V. S. Tuchkevich, “Effect of vibrations on the growth of single crystals of binary systems,” in: Crystallization and Phase Transitions [in Russian], Izd. Akad. Nauk BSSR, Minsk (1962), pp. 379–385.Google Scholar
  10. 10.
    A. F. Witt and H. C. Gatos, “Determination of microscopic rates of growth in single crystals,” J. Electrochem. Soc., 114, No. 4, 413–414(1967).CrossRefGoogle Scholar
  11. 11.
    R. S. Feigelson and A. Borshchevsky, “Method of growing single-crystal cadmium telluride,” USA Pat. No. 4,465,545.Google Scholar
  12. 12.
    V. S. Arakelyan, A. G. Avetisyan, É. G. Mirzabekyan, and F. M. Shaverdyan, “Observation of’ freezing’ of ultrasonic waves,” Pis’ma Zh. Eksp. Teor. Fiz., 27, No. 11, 656–657 (1978).Google Scholar
  13. 13.
    A. A. Wheeler, “The effect upon Czochralski growth of periodic modulation of the growth rate,” J. Cryst. Growth, 56, No. 1, 67–76 (1982).CrossRefGoogle Scholar
  14. 14.
    S. M. Manucharyan and H. G. Nalbandyan, “The effect of mechanical instability on crystallization rate in Czochralski growth system,” Cryst. Res. Technol., 17, No. 3, 295–298 (1982).CrossRefGoogle Scholar
  15. 15.
    M. D. Lyubalin, “Effect of low-frequency deformations of a melt column at an interface on crystal formation,” Izv. Akad. Nauk SSSR, Ser. Fiz., 47, No. 2, 338–341 (1983).Google Scholar
  16. 16.
    V. V. Klubovich, I. F. Kashevich, V. V. Mikhnevich, and N. K. Tolochko, “Effect of low-frequency vibrations on the growth of Rochelle salt crystals,” Kristallografiya, 29, No. 4, 822–823 (1984).Google Scholar
  17. 17.
    V. V. Klubovich, N. K. Tolochko, and I. F. Kashevich, “Experimental study of the growth of crystals from solution under the influence of vibrations,” Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 6, 42–47 (1985).Google Scholar
  18. 18.
    B. A. Agranat, M. N. Dubrovin, and N. N. Khavskii, “Effect of powerful ultrasound on the synthesis and growth of AIIBVI crystals,” Akust. Zh., 22, No. 1, 141–142 (1976).Google Scholar
  19. 19.
    V. S. Arakelyan and A. G. Avetisyan, “Effect of ultrasound on impurity incorporation into a Rochelle salt crystal,” Kristallografiya, 33, No. 5, 1239–1243 (1988).Google Scholar
  20. 20.
    Y. Hayakawa, M. Nagura, and W. Kumagawa, “Exclusion of rotational striations in pulled crystals by improved Czochralski method,” Semicond. Sci. Technol., 3, 372–376 (1988).CrossRefGoogle Scholar
  21. 21.
    B. A. Agranat, M. N. Dubrovin, N. N. Khavskii, and G. I. Éskin, Principles of Physics and Techniques of Ultrasound [in Russian], Vyssh. Shkola, Moscow (1987).Google Scholar
  22. 22.
    M. A. Margulis, Principles of Acoustic Chemistry: Chemical Reactions in Acoustical Fields. Textbook [in Russian], Vyssh. Shkola, Moscow (1984).Google Scholar
  23. 23.
    C. T. Walker and C. E. Adams, “Thermal effects of acoustic streaming near a cylindrical obstacle,” J. Acoust. Soc. Am., 31, No. 6, 813–814(1959).CrossRefGoogle Scholar
  24. 24.
    M. E. Arkhangel’skii, “Effect of acoustic vibrations on diffusion,” Usp. Fiz. Nauk, 92, No. 2, 181–206 (1967).Google Scholar
  25. 25.
    V. E. Nakoryakov, A. P. Burdukov, A. M. Boldarev, and P. N. Terleev, Heat and Mass Transfer in an Acoustic Field [in Russian], Inst. Tekh. Fiz., Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1970).Google Scholar
  26. 26.
    W. L. M. Nyborg, “Acoustic streaming,” in: Physical Acoustics, Vol. 2, Part B, W. P. Mason (ed.), Academic Press, New York and London (1965), pp. 265–331.Google Scholar
  27. 27.
    H. Schlichting, Boundary Layer Theory, Pergamon Press, London (1955).Google Scholar
  28. 28.
    V. V. Klubovich, S. E. Mozzharov, N. V. Sobolenko, et al., “Growth of crystals from aqueous solutions under the influence of vibrations,” in: Expanded Abstracts of the VIIth All-Union Conf. on the Growth of Crystals, Vol. 2 [in Russian], Moscow (1988), pp. 114–115.Google Scholar
  29. 29.
    E. V. Zharikov, L. V. Prikhod’ko, and N. R. Storozhev, “Formation of stationary liquid fluxes under the influence of vibrations of a solid,” preprint No. 18, Inst. Gen. Phys. Acad. Sci., Moscow (1989).Google Scholar
  30. 30.
    E. V. Zharikov, L. V. Prihod’ko, and N. R. Storozhev, “Bulk flow phenomenon in Czochralski configuration caused by low frequency vibrations,” Cryst. Res. Technol., 24, No. 8, 716–765 (1989).Google Scholar
  31. 31.
    G. Z. Gershuni and E. M. Zhukhovitskii, “Free thermal convection in a vibration field under weightless conditions,” Dokl. Akad. Nauk SSSR, 249, No. 3, 580–584 (1979).Google Scholar
  32. 32.
    M. P. Zavarykin, S. V. Zorin, and G. F. Putin, “Experimental study of vibrational convection,” 281, No. 4, 815–816 (1985).Google Scholar
  33. 33.
    FRG Pat. No. 970,926, Jan. 4, 1948.Google Scholar
  34. 34.
    V. L. Aref’ ev, S. I. Lukomskii, A. G. Slanov, and A. Ya. Tkachenko, “Use of vibration to intensify liquid stirring: Review,” TsNIII TÉITsM, Moscow (1977).Google Scholar
  35. 35.
    W.-S. Lieu, M. F. Wolf, D. Elwell, and R. S. Feigelson, “Low frequency vibrational stirring: A new method for rapidly mixing solutions and melts during growth,” J. Cryst. Growth, 82, No. 4, 589–597 (1987).CrossRefGoogle Scholar
  36. 36.
    E. D. Sorokodum, “Acoustic streaming and friction forces in the boundary layer of a Chaplygin profile,” Akust. Zh., 19, No. 5, 767–772 (1973).Google Scholar
  37. 37.
    L. D. Landau and E. M. Lifshits, Hydrodynamics [in Russian], Nauka, Moscow (1988).Google Scholar
  38. 38.
    O. M. Belotserkovskii, Numerical Modelling in the Mechanics of Complicated Solutions [in Russian], Nauka, Moscow (1984).Google Scholar
  39. 39.
    J. R. Carruthers, “Flow transitions and interface shapes in the Czochralski growth of oxide crystals,” J. Cryst. Growth, 36, No. 4, 212–214 (1976).CrossRefGoogle Scholar
  40. 40.
    V. I. Polezhaev and A. Ch. Prostomolotov, “Numerical study of the hydrodynamics and heat and mass transfer in a model of Czochralski growth of crystals,” in: Mathematical Modelling [in Russian], Nauka, Moscow (1986), pp. 66–75.Google Scholar
  41. 41.
    R. Lamprecht, D. Schwabe, A. Scharmann, and E. Schultheiss, “Experiments on buoyant, thermocapillary, and forced convection in Czochralski configuration,” J. Cryst. Growth, 65, No. 1/3, 143–152 (1983).CrossRefGoogle Scholar
  42. 42.
    Handbook of Molten Salts, Vol. 1 [Russian translation], Khimiya, Leningrad (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York  1993

Authors and Affiliations

  • E. V. Zharikov
  • L. V. Prikhod’ko
  • N. R. Storozhev

There are no affiliations available

Personalised recommendations