Use of Photostimulated Vaporization During Growth of A2B5, A2B6, and A4B6 Films

  • S. N. Maksimovskii
  • P. P. Sidorov
Part of the Growth of Crystals book series (GROC, volume 19)


The basic features of photostimulated epitaxy have been reviewed [1]. It has been demonstrated that the crystallization rates of epitaxial films during irradiation by light with wavelengths in the range 0.25–1.2μ m increase several times compared with equivalent epitaxial processes and that the substrate surface is effectively cleaned and partially recrystallized before the growth.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Maksimovskii, “Photostimulated epitaxy,” in: Growth of Crystals, Vol. 17, E. I. Givargizov and S. A. Grinberg (eds.), Consultants Bureau, New York (1991), pp. 23–33.CrossRefGoogle Scholar
  2. 2.
    N. N. Loiko, S. N. Maksimovskii, and A. P. Shotov, “Evaporation of GaAs by light irradiation,” Kratk. Soobshch. Fiz., No. 8, 11–13(1988).Google Scholar
  3. 3.
    L. L. Chang, L. Esaki, and W. E. Howard, “Structures grown by molecular beam epitaxy,” in. Vac. Sci. Technol, 10, No. 5, 655–662 (1973).CrossRefGoogle Scholar
  4. 4.
    G. H. Olsen and M. Ettenberg, “Features of preparing AIIIBv heteroepitaxial structures,” in: Growth of Crystals, Vol. 2 [Russian translation], Mir, Moscow (1981), pp. 9–76.Google Scholar
  5. 5.
    G. A. Somorjai and D. W. Jepsen, “Evaporation of CdS single crystals,” J. Chem. Phys., 41, No. 3, 1389–1399 (1964).CrossRefGoogle Scholar
  6. 6.
    S. N. Maximovsky, I. P. Revokatova, and M. A. Selezneva, “Photostimulated epitaxy of II—VI and IV—VI layers,” J. Cryst. Growth, 52, No. 1, 141–145 (1981).CrossRefGoogle Scholar
  7. 7.
    L. Hollan, J. P. Hallais, and J. C. Brice, “The preparation of GaAs,” Curr. Top. Mater. Sci., 5, 1–217 (1980).Google Scholar
  8. 8.
    E. W. Chase, R. T. Hepplewhite, D. C. Krupka, and D. Kahng, “Electroluminescence of ZnS lumocen devices containing rare-earth and transition metal fluorides,J. Appl. Phys., 40, No. 6, 2512–2519 (1969)CrossRefGoogle Scholar
  9. 9.
    J. Benoit, P. Benalloul, and B. S. Blanzat, “Rare-earth complex dopants in ax. thin-film electroluminescent cells,” J. Lumin., No. 23, 175–190 (1981).CrossRefGoogle Scholar
  10. 10.
    S. N. Maksimovskii, P. P. Sidorov, and A. P. Shotov, “Luminescent films of ZnSerYb, ZnSe:Dy, and ZnS:Tm grown by photostimulated epitaxy,” Kratk. Soobshch. Fiz., No. 8, 45–46 (1988).Google Scholar
  11. 11.
    V. G. Artyushenko, “Polycrystalline optical fibers for the middle IR region,” Tr. Inst. Obshch. Fiz., Akad. Nauk, 15, 3–18 (1988).Google Scholar
  12. 12.
    R. F. C. Farrow, “MBE growth of II-VI and IV-VI compounds and alloys,” in: NATO ASI Ser, Ser. E, 87 (Molecular-Beam Epitaxy and Heterostructures), 1985, pp. 227–262.Google Scholar
  13. 13.
    D. A. Cammack, R. J. Dalby, H. J. Cornellisen, and J. Khurgin, “Electron beam pumped lasing in ZnSe/ZnSSe superlattice structures grown by MBE,” J. Appl. Phys., 62, No. 7, 3071–3074 (1987).CrossRefGoogle Scholar
  14. 14.
    N. Mino, M. Kobayashi, M. Konagai, and K. Takahashi, “Epitaxial growth of high-quality ZnSe on Si substrates by MBE and application to DC electroluminescent cells,” J. Appl Phys., 58, No. 2, 793–796 (1985).CrossRefGoogle Scholar
  15. 15.
    T. Yokogawa, M. Ogura, and T. Kajiwara, “ZnSe/ZnS heteroepitaxial growth using an intermediate strained-layer superlattice buffer,” J. Appl. Phys., 62, No. 7, 2843–2847 (1987).CrossRefGoogle Scholar
  16. 16.
    S. N. Maksimovskii, P. P. Sidorov, and A. P. Shotov, “Luminescence ofZnSe/Si and ZnSe/ZnS heterostructures grown by photostimulated epitaxy,” Kratk. Soobshch. Fiz., No. 8, 43–44 (1988).Google Scholar
  17. 17.
    S. N. Maksimovskii, P. P. Sidorov, and A. P. Shotov, “Properties of strained ZnSe grown on Si and ZnS substrates by photostimulated epitaxy,” Kratk. Soobshch. Fiz., No. 3, 38–40 (1989).Google Scholar
  18. 18.
    M. Enatsu, M. Shimizu, T. Mizuki, et al., “Photoluminescence study of GaAs grown directly on Si substrates,” Jpn. J. Appl. Phys., 26, No. 9, L1468–L1471 (1987).CrossRefGoogle Scholar
  19. 19.
    R. Fischer, H. Morcok, D. A. Newman, et al., “Material properties of high-quality GaAs epitaxial layers grown on Si substrates,” J. Appl. Phys., 60, No. 5, 1640–1648 (1986).CrossRefGoogle Scholar
  20. 20.
    T. S. Wagner, C. H. Heckelman, and H. Nelkowski, “Optical reflectivity and electronic structure of ZnSSe mixed crystals,” Phys. Status Solidi B, 65, No. 1, K75–K77 (1974).CrossRefGoogle Scholar
  21. 21.
    R. V. Alves, R. A. Buchanan, K. A. Wickersheim, and E. A. C. Yates, “Neodymium-activated lanthanum oxysulfide: A new high-gain laser material,” J. Appl. Phys., 42, No. 8, 3043–3048 (1971).CrossRefGoogle Scholar
  22. 22.
    T. G. Maple and R. A. Buchanan, “RF-sputtered luminescent rare-earth oxysulfide crystals,” J. Vac. Sci. TechnoL, 10, No. 5, 616–620 (1973).CrossRefGoogle Scholar
  23. 23.
    R. J. Baughman, “Czochralski growth of lanthanum oxysulfide single crystals,” Mater. Res. Bull, 8, No. 12, 1421–1425 (1973).CrossRefGoogle Scholar
  24. 24.
    S. N. Maksimovskii and P. P. Sidorov, “Films of La and Y oxysulfides grown from the vapor,” Kratk. Soobshch. Fiz., No. 9, 32–33 (1988).Google Scholar
  25. 25.
    L. E. Sobon, K. A. Wickersheim, R. A. Buchanan, and R. V. Alves, “Growth and characterization of lanthanum oxysulfide single crystals,” J. Appl. Phys., 42, No. 8, 3049–3053 (1971).CrossRefGoogle Scholar
  26. 26.
    Yu. M. Golovin and A. A. Tkachenko, “Interpretation of the vibrational spectrum and force field of La oxysulfide,” Zh. Neorg. Khim., 32, No. 12, 2895–2898 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York  1993

Authors and Affiliations

  • S. N. Maksimovskii
  • P. P. Sidorov

There are no affiliations available

Personalised recommendations