Application of Ellipsometry in Studies of the Growth of Crystals and Thin Films

  • V. A. Yakovlev
Part of the Growth of Crystals book series (GROC, volume 19)


Ellipsometry studies of surfaces and thin films enable information on the optical properties of the studied media to be obtained and thicknesses of thin surface films to be determined. The first developed method was monochromatic ellipsometry, which was limited as such. Recently, spectral ellipsometry (SE) has been extensively developed and has enabled the abilities of the method to be widely expanded.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland, Amsterdam (1977).Google Scholar
  2. 2.
    A. V. Rzhanov (ed.), Principles of Ellipsometry [in Russian], Nauka, Novosibirsk (1979).Google Scholar
  3. 3.
    D. E. Aspnes and A. A. Studna, “High precision scanning ellipsometer,” Appl. Opt., 14, No. 1, 220–228 (1975).CrossRefGoogle Scholar
  4. 4.
    B. Drevillon, J. Perrin, R. Marbot, et al., “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Rev. Sei. Instrum., 53, No. 7, 969–977 (1982).CrossRefGoogle Scholar
  5. 5.
    C. Acher, E. Bigan, and B. Drevillon, “Improvements of phase-modulated ellipsometry,” Rev. Sci. Instrum., 60, No. 1, 65–77 (1989).CrossRefGoogle Scholar
  6. 6.
    Yu. A. Blyumkina, Yu. B. Algazin, A. V. Arkhipenko, et al., “System of automated ellipsometry measurements,” Opt. Spectrosk., 40, No. 3, 596–599 (1976).Google Scholar
  7. 7.
    B. Drevillon, “Spectroscopic ellipsometry of ultrathin films: from UV to IR,” Thin Solid Films, 163, No. 1, 157–166 (1988).CrossRefGoogle Scholar
  8. 8.
    B. Drevillon and R. Benferhat, “Infrared ellipsometry study of the vibrational properties and the growth of hydrogenated amorphous silicon ultrathin films,” J. Appl. Phys., 63, No. 10, 5088–5091 (1988).CrossRefGoogle Scholar
  9. 9.
    P. G. Snyder, M. C. Rost, G. H. Bu-Abbud, et al., “Variable angle of incidence spectroscopic ellipsometry: Application to GaAs-AlxGal-xAs multiple heterostruetures,” J. Appl. Phys., 60, No. 9, 3292–3302 (1986).CrossRefGoogle Scholar
  10. 10.
    J. A. Woollam, P. G. Snyder, A. W. McCormick, et al., “Ellipsometric measurements of molecular-beam-epitaxy-grown semiconductor multilayer thickness: A comparative study,” J. Appl. Phys., 62, No. 12, 4867–4871 (1987).CrossRefGoogle Scholar
  11. 11.
    D. Beaglehole and D. Nason, “Transition layer on the surface of ice,” Surf. Sci., 96, No. 13, 357–363 (1980).CrossRefGoogle Scholar
  12. 12.
    Y. Furukawa, Y. Yamamoto, and T. Kuroda, “Ellipsometric study of the transition layer on the surface of an ice crystal.” J. Cryst. Growth, 82, No. 4, 665–677 (1987).CrossRefGoogle Scholar
  13. 13.
    A. A. Chernov and V. A. Yakovlev, “Ellipsometric study of the surface melting on the biphenyl basal face,” Poverkhnost, No. 2, 39–47 (1986).Google Scholar
  14. 14.
    A. A. Chernov and V. A. Yakovlev, “Thin boundary layers of the melt of the biphenyl single crystal and its premelting,” Langmuir, No. 3, 635–640 (1987).CrossRefGoogle Scholar
  15. 15.
    V. N. Lebedeva and A. Yu. Tronin, “Observation of a boundary layer of solution adjoining the face of a growing crystal,” Izv. Akad. Nauk SSSR, Ser. Fiz., 50, No. 3, 483–485 (1986).Google Scholar
  16. 16.
    A. Yu. Tronin, “Development of an ellipsometry method for layered anisotropic media and application to a study of the surface of a growing crystal,” Author’s Abstract of a Candidate Dissertation in Phys.-Mat. Sci., Moscow (1989).Google Scholar
  17. 17.
    K. Imai, K. Kamazaki, T. Haga, et al., “Optimal crystal growth conditions of ZnSe grown by molecular beam epitaxy,” J. Cryst. Growth, 91, No. 4, 617–622 (1988).CrossRefGoogle Scholar
  18. 18.
    V. A. Yakovlev, “Application of ellipsometry of anisotropic media to the study of surface films on crystals,” Poverkhnost, No. 1, 23–28 (1986).Google Scholar
  19. 19.
    A. Yu. Klimova, A. F. Konstantinova, and Z. B. Perekalina, “Study of the actual structure of crystals by optical methods,” Kristallografiya, 27, No. 6, 1136–1139 (1982).Google Scholar
  20. 20.
    F. Hottier and J. B. Theeten, “Surface analysis during vapor phase growth,” J. Cryst. Growth, 48, No. 4, 644–654 (1980).CrossRefGoogle Scholar
  21. 21.
    F. Hottier, J. Hallais, and F. Simondet, “In situ monitoring by ellipsometry of metalorganic epitaxy of GaAlAs-GaAs superlattice,” J. Appl. Phys., 51, No. 3, 1599–1602 (1980).CrossRefGoogle Scholar
  22. 22.
    G. Laurence, F. Hottier, and J. Hallais, “Growth monitoring and characterization of (Al, Ga)As-GaAs heterostruetures by ellipsometry,” J. Cryst. Growth, 55, No. 1, 198–206 (1981).CrossRefGoogle Scholar
  23. 23.
    M. Gauch and G. Quentel, “Ellipsometry study of (0001) cadmium crystal faces during vapor growth,” Surf Sci, 108, No. 3, 617–640 (1981).CrossRefGoogle Scholar
  24. 24.
    L. V. Sokolov, M. A. Lyamin, V. A. Markov, et al., “Oscillations of optical characteristics of the growth surface of Ge films during molecular beam epitaxy,” Pis’ma Zh. Eksp. Teor. Fiz., 44, No. 6, 278–280 (1986).Google Scholar
  25. 25.
    G. Quentel, M. Gauch, and A. Degiovanni, “In situ ellipsometry studies of the growth of Pb on Si(111) surfaces,” Surf Sci., 193, No. 1/2, 212–220 (1988).CrossRefGoogle Scholar
  26. 26.
    D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B: Condens. Matter, 20, No. 8, 3292–3302 (1979).CrossRefGoogle Scholar
  27. 27.
    D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films, 89, No. 3, 249–262 (1982).CrossRefGoogle Scholar
  28. 28.
    F. Meyer and A. Kroes, “Surface states at the clean surfaces of cleaved Si(l11) and GaAs(l 10),” Surf Sci., 47, No. 1, 124–131 (1975).CrossRefGoogle Scholar
  29. 29.
    T. Strumpler and H. Luth, “Growth of Sb overlayers on GaAs(llO),” Surf Sci., 182, No. 1, 545–546 (1987).CrossRefGoogle Scholar
  30. 30.
    J. B. Theeten, “Real-time and spectroscopic ellipsometry of film growth: application to multilayer systems in plasma and CVD processing of semiconductors,” Surf Sci., 96, 275–293 (1980).CrossRefGoogle Scholar
  31. 31.
    D. E. Aspnes and J. B. Theeten, “Spectroscopic analysis of the interface between Si and its thermally grown oxide,” J. Electrochem. Soc., 127, No. 6, 1359–1365 (1980).CrossRefGoogle Scholar
  32. 32.
    J. B. Theeten and M. Erman, “Depth profiling and interface analysis using spectroscopic ellipsometry,” J. Vac. Sci. Technoi., 20, No. 3, 471–475 (1982).CrossRefGoogle Scholar
  33. 33.
    K. Vedam and P. J. McMarr, “Non-destructive depth profiling by spectroscopic ellipsometry,” Appl. Phys. Lett., 47, No. 4, 339–340 (1985).CrossRefGoogle Scholar
  34. 34.
    F. Ferrieu and J. H. Lecat, “Characterization of thin films and materials used in semiconductor technology by spectroscopic ellipsometry,” Thin Solid Films, 164, No. 1/2, 43–50 (1988).CrossRefGoogle Scholar
  35. 35.
    D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and InSb from 1.5 to 6.0 eV,” Phys. Rev. B: Condens. Matter, 27, No. 2, 985–1009 (1983).CrossRefGoogle Scholar
  36. 36.
    D. E. Aspnes, A. A. Studna, and E. Kinsbron, “Dielectric properties of heavily doped crystalline and amorphous silicon from 1.5 to 6.0 eV,” Phys. Rev. B: Condens. Matter, 29, No. 2, 768–779 (1984).CrossRefGoogle Scholar
  37. 37.
    J. Humlicek, M. Garriga, M. Cardona, et al., “Ellipsometric spectra of YBa2Cu3O7 in the 1.7–5.3 eV range,” Solid State Commun., 66, No. 10, 1071–1075 (1988).CrossRefGoogle Scholar
  38. 39.
    S. Kumar, D. K. Pandya, and K. L. Chopra, “A spectroscopic ellipsometry study of the growth and microstructure of glow-discharge amorphous and microcrystalline silicon films,” J. Appl. Phys., 63, No. 5, 1497–1503 (1988).CrossRefGoogle Scholar
  39. 40.
    S. Kumar, B. Drevillon, and C. Godet, “In situ spectroscopic ellipsometry study of the growth of microcrystalline silicon,” J. Appl. Phys., 60, No. 4, 1542–1544 (1986).CrossRefGoogle Scholar
  40. 41.
    B. Drevillon, C. Godet, and S. Kumar, “In situ spectroscopic ellipsometry investigation of the nucleation of microcrystalline silicon,” Appl. Phys. Lett., 50, No. 23, 1651–1653 (1987).CrossRefGoogle Scholar
  41. 42.
    A. M. Antoine, B. Drevillon, and P. Roca i Cabarrocas, “In situ investigation of the growth of rf grow-discharge deposited amorphous germanium and silicon films,” J. Appl. Phys., 61, No. 7, 2501–2508 (1987).CrossRefGoogle Scholar
  42. 43.
    A. M. Antoine and B. Drevillon, “Influence of the substrate on the early stage of the growth of hydrogenated amorphous silicon evidenced by kinetic ellipsometry,” J. Appl. Phys., 63, No. 2, 360–367 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York  1993

Authors and Affiliations

  • V. A. Yakovlev

There are no affiliations available

Personalised recommendations