Electrically Active Defects of Silicon Crystals

  • A. N. Buzynin
  • A. E. Luk’yanov
  • V. V. Osiko
  • V. M. Tatarintsev
Part of the Growth of Crystals book series (GROC, volume 19)


Electrically active defects directly influence the characteristics and reliability of semiconducting devices. Therefore, it is important to study the nature of such defects. All types of microscopic defects (MD) in dislocation-free Si crystals should theoretically be electrically active, i.e., change the local electrical-field potential. The extent of the activity of the initial MD changes during various processing treatments of a single crystal, not to mention the new defects that appear during the treatments. The defects “outgrow ” the impurity atmosphere or lose it. This also affects their activity. However, most methods of observing defects are not sensitive enough to reveal “weak electrical activity. ” Quantitative criteria for evaluating the degree of activity have not been developed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. I. Hanoka and R. O. Bell, “Electron-beam-induced currents in semiconductors,” Ann. Rev. Mater. Sci., 2, 353–380 (1981).CrossRefGoogle Scholar
  2. 2.
    S. M. Davidson and C. A. Dimitriadis, “Advances in the electrical assessment of semiconductors using the scanning electron microscope,” J. Microsc. (Oxford), 118, No. 3, 275–290 (1980).CrossRefGoogle Scholar
  3. 3.
    H. J. Leamy, “Charge collection scanning electron microscopy, ”. Appl. Phys., 53, No. 6, R51–R80 (1982).CrossRefGoogle Scholar
  4. 4.
    J. F. Bresse, “Quantitative investigations in semiconductor devices by electron beam-induced current mode: A review, ” in: Proc. SEM-1982, Vol. 4, Scanning Electron Microsc, pp. 1487–1500.Google Scholar
  5. 5.
    D. B. Holt and M. Lesniak, “Recent developments in electrical microcharacterization using the charge collection mode of the scanning electron microscope, ” in: Proc. “SEM-1985, Vol. 1, Scanning Electron Microsc, pp. 67–86.Google Scholar
  6. 6.
    K. V. Ravi, Imperfections and Impurities in Semiconductor Silicon, John Wiley and Sons, New York (1981).Google Scholar
  7. 7.
    M. G. Mil’vidskii and V. B. Osvenskii, Structural Defects in Single Crystals of Semiconductors [in Russian], Metallurgiya, Moscow (1984).Google Scholar
  8. 8.
    V. V. Voronkov, G. I. Voronkova, B. V. Zubov, et al., “Impurity atmospheres in dislocation-free Si,” Fiz. Tverd. Tela (Leningrad), 13, No. 1, 846–853 (1979).Google Scholar
  9. 9.
    V. P. Kalinushkin, “Study of impurity defects in semiconductors by scattering of IR laser radiation,” Tr. Inst. Obshch. Fiz., Akad. Nauk SSSR, 4, 3–59 (1986).Google Scholar
  10. 10.
    A. N. Buzynin, N. A. Butylkina, A. E. Luk’yanov, et al., “Electrically active structure of V-G-regions of Si crystals prepared by the Czochralski method,” Izv. Akad. Nauk SSSR, Ser. Fiz., 52, No. 7, 1387–1390 (1988).Google Scholar
  11. 11.
    A. N. Buzynin, N. A. Butylkina, I. B. Grichevskii, et al., “Method of detecting electrically active defects of semiconductors, ” USSR Pat. No. 15,311,766; Byull. Izobret., No. 47 (1989).Google Scholar
  12. 12.
    H. Johanssen, H. Bartsch, J. Heydenrich, and B. Lammel, “Comparative characterization of boron-implanted silicon after pulse laser annealing along single traces by SEM (SE, EBIC) and TEM studies” Cryst. Res. Technol., 20, No. 4, 499–507 (1985).CrossRefGoogle Scholar
  13. 13.
    V. V. Aristov and A. E. Luk’yanov, “Local diagnostics in microelectronics” Elektron. Promst., No. 2, 41–44 (1990).Google Scholar
  14. 14.
    G. Heydenreich and O. Breitenstein, “Characterization of defects in semiconductors by combined application of SEM (EBIC) and DLTS,” Microsc. Semicond. Mater., No. 76, 319–328 (1985).Google Scholar
  15. 15.
    A. N. Buzynin, S. E. Zabolotskii, V. P. Kalinushkin, et al., “Large-scale electrically active impurity clusters in Si crystals grown by the Czochralski method” Fiz. Tekh. Poluprovodn. (Leningrad), 24, No. 2, 264–270 (1990).Google Scholar
  16. 16.
    M. Ives, “Photo-and joule-displacement microscopy,” Phys. Bull., 38, No. 4, 145–147 (1987).Google Scholar
  17. 17.
    C. J. Wu and D. B. Wittry, “Investigation of minority-carrier diffusion lengths by electron bombardment of Schottky barriers,” J. Appl. Phys., 49, No. 5, 2827–2836 (1978).CrossRefGoogle Scholar
  18. 18.
    V. M. Dublitsevich, A. N. Buzynin, A. E. Luk’yanov, and N. A. Butylkina, “Detection of defects in the structure and electrical properties of Si by electron-probe methods,” Izv. Akad. Nauk SSSR, Ser. Fiz., 48, No. 12, 2444–2446 (1984).Google Scholar
  19. 19.
    N. M. Johnson and S. K. Hahn, “Hydrogen passivation of oxygen-related thermal-donor defects in silicon,” Appl. Phys. Lett., 48, No. 11, 709–711 (1986).CrossRefGoogle Scholar
  20. 20.
    A. Chantre, S. J. Pearton, J. C. Kimerling, et al., “Interaction of hydrogen and thermal donor defects in silicon,” Appl Phys. Lett., 50, No. 9, 513–515 (1987).CrossRefGoogle Scholar
  21. 21.
    A. N. Buzynin, N. A. Butylkina, I. B. Grichevskii, et al., “Determination of the characteristics of electrically active defects of Si crystals,” Izv. Akad. Nauk SSSR, Ser. Fiz., 53, No. 1, 288–292 (1990).Google Scholar
  22. 22.
    K. Kanaya and S. Okayama, “Penetration and energy loss theory of electron in solid target, ” in: Microscopie electronique, 1970, Soc. Franc. Microsc. Electron., Grenoble (1970), Vol. 2, pp. 159–160.Google Scholar
  23. 23.
    C. Donolato, “On the theory of SEM charge collection imaging of localized defects in semiconductors,” Optics, 52, No. 1, 19–36 (1978).Google Scholar
  24. 24.
    H. G. Leamy, L. C. Kimerling, and S. D. Ferries, “Silicon single crystal characterization by SEM,” Scanning Electron Microsc., 9, pt. 1, 529–538 (1976).Google Scholar
  25. 25.
    A. M. Éidenzon and N. I. Puzanov, “Effect of growth rate on microdefects in large dislocation-free Si crystals prepared by the Czochralski method,” Kristallografiya, 30, No. 5, 992–998 (1985).Google Scholar
  26. 26.
    N. I. Puzanov and A. M. Éidenzon, “Relaxation in a system of point defects of a growing dislocation-free Si crystal, ” Kristallografiya, 31, No. 2, 373–379 (1986).Google Scholar
  27. 27.
    V. V. Voronkov, “The mechanism of swirl defects formation in silicon,” J. Cryst. Growth, 59, No. 3, 625–643 (1982).CrossRefGoogle Scholar
  28. 28.
    A. N. Buzynin, I. B. Grichevskii, V. P. Kalinushkin, et al., “Comparative analysis of the detectability by various methods of microdefects in Si single crystals, ” in: Abstracts of Papers of the Seventh All-Union Conf. on Growth of Crystals [in Russian], Vol. 3, Moscow (1988), pp. 315–316.Google Scholar
  29. 29.
    A. J. R. DeKock and W. M. van de Wijgert, “The effect of doping on the formation of swirl defects in dislocation-free Czochralski-grown silicon crystals,” J. Cryst. Growth, 49, No. 4, 718–734 (1980).CrossRefGoogle Scholar
  30. 30.
    A. N. Buzynin, Yu. S. Dement’ev, I. F. Urazgil’din, et al., “Formation of a defect-free zone in Si plates during annealing,” Izv. Akad. Nauk SSSR, Ser. Fiz., 47, No. 6, 1136–1140 (1983).Google Scholar
  31. 31.
    A. N. Buzynin, A. I. Buval’tsev, I. B. Grichevskii, et al., “Expanded capabilities of the induced-current SEM method for analyzing electrically active microdefects, ” in:Abstracts of Papers of the Sixth All-Union Symp, “SEM-89 ” [in Russian], Zvenigorod, Moscow (1989), p. 8Google Scholar
  32. 32.
    W. S. Yang, K. Y. Ahn, B. P. R. Marioton, et al., “Gold gettering in directly bonded silicon wafers,” Jpn. J. Appl. Phys., 28, No. 5, L721–L724 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York  1993

Authors and Affiliations

  • A. N. Buzynin
  • A. E. Luk’yanov
  • V. V. Osiko
  • V. M. Tatarintsev

There are no affiliations available

Personalised recommendations