Advertisement

Growth Of Single Crystals Of La-Sr-Cu-O, Y-Ba-Cu-O, and Bi-Sr-Ca-Cu-O High-Temperature Superconductors

  • L. N. Dem’yanets
  • A. B. Bykov
  • O. K. Mel’nikov
Chapter
Part of the Growth of Crystals book series (GROC, volume 19)

Abstract

The discovery in 1986 of high-temperature superconductivity in lanthanum-alkaline-earth cuprates by Bednorz and Müller [1] stimulated a torrent of studies on the search for, synthesis of, and determination of the physical characteristics of an enormous number of various oxides mainly based on cuprates. The first result of this broad search was the observation of yttrium-alkaline-earth superconductors with higher transition temperatures into the superconducting state [2]. Reports [3,4] of superconductivity in the Bi-Sr-Cu-0 system prompted a comprehensive study of superconducting materials that do not contain rare earths. An abrupt increase of T c was achieved after partial replacement of Sr by Ca [5]. The transition temperature was further increased in Tl-alkaline-earth cuprates [6–10], which also do not contain rare earths.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Bednorz and K. A. Müller, “Possible high-T c superconductivity in the BaLaCuO system,” Z. Phys. B: Condens. Matter, 64, No. 2, 189–193 (1986).CrossRefGoogle Scholar
  2. 2.
    M. K. Wu, J. K. Ashburn, C. J. Torny, et al., “Superconductivity at 93 K in a new mixed phase Y-Ba-Cu-0 compound system at ambient pressure,” Phys. Rev. Lett., 58, No. 9, 908–912 (1987).CrossRefGoogle Scholar
  3. 3.
    C. Michel, M. Herveieu, M. M. Borel, et al., “Superconductivity in the Bi-Sr-Cu-0 system,” Z Phys. B: Condens. Matter, 68, No. 4, 421–423 (1987).CrossRefGoogle Scholar
  4. 4.
    J. Akimitsu, A. Yamazaki, H. Sawa, et al., “Superconductivity in the Bi-Sr-Cu-0 system,” Jpn. J. Appl. Phys., 26, L2080–L2081 (1987).CrossRefGoogle Scholar
  5. 5.
    H. Maeda, Y. Tanaka, M. Fukutomi, et al., “A new high-T c oxide superconductor without a rare earth element,” Jpn. J. Appl. Phys., 27, No. 2, L209–L210 (1988).CrossRefGoogle Scholar
  6. 6.
    Z. Z. Sheng and A. M. Hermann, “Bulk superconductivity at 120 K in the Tl-Ca/Ba-Cu-O system,” Nature (London), 332, No. 6159, 138–139 (1988).CrossRefGoogle Scholar
  7. 7.
    D. Dem-Hughes, “Ceramic superconductors—developments and prospects,” Met. Mater., 14, No. 12, 741–745 (1988).Google Scholar
  8. 8.
    T. Itoh, U. Hiroshi, and A. Sakata, “Synthesis of a Tl-Ba-Cu-O superconductor and its properties,” Jpn. J. Appl. Phys., 27, No. 4, L559–L560 (1988).CrossRefGoogle Scholar
  9. 9.
    D. Gazit and R. Feigelson, “Laser-heated pedestal growth of high-T c Bi-Sr-Ca-Cu-O superconducting fibers,” J. Cryst. Growth, 91, No. 3, 318–330 (1988).CrossRefGoogle Scholar
  10. 10.
    D. S. Ginley, B. Morosin, K. J. Baughman, et al., “Growth of crystals and effects of oxygen annealing in the Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O superconductor systems,” J. Cryst. Growth, 91, No. 3, 456–462 (1988).CrossRefGoogle Scholar
  11. 11.
    P. M. Lambert, M. R. Harrison, and P. P. Edwards, “Magnetism and superconductivity in the spinel system Li1-xMxTi2O4 (M = Mn2+, Mg2+),” J. Solid State Chem., 75, No. 1, 332–346 (1988).CrossRefGoogle Scholar
  12. 12.
    A. W. Sleight, J. L. Gillson, and P. E. Bierstedt, “High temperature superconductivity in the BaPb1_x.BixO3 systems,” Solid State Commun., 17, No. 1, 27–28 (1975).CrossRefGoogle Scholar
  13. 13.
    L. F. Schneemeyer, R. B. Van Dover, S. H. Glearum, et al, “Growth of superconducting single crystals in the Bi-Sr-Ca-Cu-O system from alkali chloride fluxes,” Nature (London), 332, No. 6163, 422–423 (1988).CrossRefGoogle Scholar
  14. 14.
    M. Hikita, T. Iwata, Y. Tajima, et al., “Growth of superconducting single-crystal Bi-Sr-Ca-Cu-O compounds,” J. Cryst. Growth, 91, No. 3, 282–286 (1988).CrossRefGoogle Scholar
  15. 15.
    D. G. Hinks, B. Dabrowski, J. D. Jorgensen, et al., “Synthesis, structure and superconductivity in the Ba1-xKxBiO3-ysystem,” Nature (London), 333, No. 6176, 836–838 (1988).CrossRefGoogle Scholar
  16. 16.
    L. F. Schneemeyer, J. K. Thomas, T. Sleight, et al., “Growth and structural characterization of superconducting Ba1-xKx.BiO3 single crystals,” Nature (London), 335, No. 6189, 421–423 (1988).CrossRefGoogle Scholar
  17. 17.
    M. A. Damento, K. A. Gschneider, and R. W. McCallum, “Preparation of single crystals of superconducting YBa2Cu3O7_x from CuO,” Appl. Phys. Lett., 51, No. 9, 690–691 (1987).CrossRefGoogle Scholar
  18. 18.
    J. D. Jorgensen, V. Dabrowski, Shiyou Pei, D. G. Hinks, et al, “Superconducting phase of La2Cu04+δ: A superconducting composition resulting from phase separation,” Phys. Rev. B, 38, No. 16, 11337–11345 (1988).CrossRefGoogle Scholar
  19. 19.
    M. Onoda and S. Shamoto, et al., ”Crystal structures of (La1-xMx)2CuO4_δ (M = Sr and Ba),” Jpn. J. Appl. Phys., 26, No. 4, L363–L365 (1987).Google Scholar
  20. 20.
    Y. Tokura, H. Takagi, and S. Uchida, “A superconducting copper oxide compound with electrons as the charge carriers,” Nature (London), 337, No. 6205, 345–347 (1989).CrossRefGoogle Scholar
  21. 21.
    H. Sawa, S. Suzuki, H. Watanabe, et al., “Unusually simple crystal structure of an Nd-Ce-Sr-Cu-O superconductor,” Nature (London), 337, No. 6205, 347–348 (1989).CrossRefGoogle Scholar
  22. 22.
    M. Kosuge, “Preparation of an almost single phase superconductor in Nd-Ce-Sr-Cu-O,” Jpn. J. Appl. Phys., 28, No. 1, 49–51 (1989).CrossRefGoogle Scholar
  23. 23.
    Y. Hidaka and M. Suzuki, “Growth and anisotropic superconducting properties of Nd2-xCexCuO4-y single crystals,” Nature (London), 338, No. 6217, 635–637 (1989).CrossRefGoogle Scholar
  24. 24.
    J. E. Greedan, A. H. Reilly, and S. V. Studer, “Oxygen ordering in the crystal structure of the 93 K superconductor YBa2Cu3O7_x using powder neutron diffraction at 298 and 79.5 K,”Phys. Rev., 35, No. 16, 8770–8779 (1987).Google Scholar
  25. 25.
    J. Karpinski, C. Beeli, E. Kaldis, et al., “Crystallization of YBa2Cu3O7_x from nearly stoichiometric and nonstoichiometric melts under oxygen pressure up to 2800 bar,” Physica C (Amsterdam), 153, No. 155, 830–831 (1988).CrossRefGoogle Scholar
  26. 26.
    P. Marsh, R. H. Fleming, M. L. Mandich, et al., “Crystal structure of the 80 K superconductor YBa2Cu4O8,” Nature (London), 334, No. 6178, 141–143 (1988).CrossRefGoogle Scholar
  27. 27.
    S. Kemmler-Sack, A. Ehmann, R. Kiemel, et al., “Neuer Hoch-T C Supraleiter im System Bi-Pb-Sr-Ca-Cu-O,” J. Less-Common Met., 144, L1–L3 (1988).CrossRefGoogle Scholar
  28. 28.
    A. Ono, S. Sueno, F. P. Okamura, “Preparation and properties of single crystals of the high-T c oxide superconductor in the Bi-Sr-Ca-Cu-O system,” Jpn. J. Appl. Phys., 27, No. 5, L786-L789 (1988).Google Scholar
  29. 29.
    C. V. Chu, J. Bechtold, L. Gao, et al, “Superconductivity up to 114 K in the Bi-Al-Ca-Sr-Cu-O compound system without rare earth elements,” Phys. Rev. Lett., 60, No. 10, 941–943 (1988).CrossRefGoogle Scholar
  30. 30.
    S. Sueno, R. Yoshizaki, I. Nakai, et al., “Single-crystal X-ray and magnetization study of the 106 K Bi-Sr-Ca-Cu-O superconductor,” Jpn. J. Appl Phys., 27, No. 8, L1463–L1466 (1988).CrossRefGoogle Scholar
  31. 31.
    H. W. Zanderbergen, Y. K. Huang, M. J. V. Menken, et al., “Electron microscopy on the T c = 110 K (midpoint) phase in the system Bi2O3-SrO-Ca0-Cu0,” Nature (London), 322, No. 6165, 620–622 (1988).CrossRefGoogle Scholar
  32. 32.
    S. Adachi, H. Hirano, Y. Takahashi, et al., “Synthesis of Bi-Sr-Ca-Cu-O ceramics with large intergrowth defects,” Jpn. J. Appl. Phys., 28, No. 2, 209–212 (1989).CrossRefGoogle Scholar
  33. 33.
    R. J. Cava, B. Battlogg, J. J. Krajewski, et al., “Superconductivity near 70 K in a new family of layered copper oxides, Nature (London), 336, No. 6196, 211–214 (1988).Google Scholar
  34. 34.
    N. W. Zandbergen, W. T. Fu, L. van Reitenbeek, et al., “Superconductivity in (Pb, Bi)2Sr2_xLaxCu2O6+δ, Physica C (Amsterdam), 159, No. 1, 81–87 (1989).Google Scholar
  35. 36.
    Y. Tokura, T. Arima, H. Takagi, et al., “New double-sheet copper oxide compound with BiO or T1O bilayers,” Nature (London), 342, No. 6252, 890–895 (1989).CrossRefGoogle Scholar
  36. 37.
    A. R. Yavari and P. Lejay, “High-T c superconductivity in rapidly solidified BiSrCaCuO,” J. Cryst. Growth, 91, No. 3, 290–294 (1988).CrossRefGoogle Scholar
  37. 38.
    R. S. Feigelson and Y. X. Fan, “Presentation at workshop on crystal growth of high temperature superconducting materials,”in: VIIth Am. Conf. Cryst. Growth, Monterey, Calif. (1987).Google Scholar
  38. 39.
    T. Nakada, M. Itoh, K. Koga, and I. Ogura, “Preparation of (La, Sr)2CuO4 high-T c superconductor by laser-melting without crucible,” Seisan Kenkyu, 40, No. 6, 279–281 (1988).Google Scholar
  39. 40.
    T. Dinger, T. K. Wornington, W. Gallagher, and R. L. Sandstrom, “Direct observation of electronic anisotropy in single crystal YBa2Cu3O7_xPhys. Rev. Lett., 58, No. 25, 2687–2690 (1987).CrossRefGoogle Scholar
  40. 41.
    H. Katayama-Yoshida, Y. Okabe, T. Takahashi, et al., “Growth of YBa2Cu3O7_δ single crystals,” Jpn. J. Appl. Phys., 26, No. 12, L2007–L2009 (1987).CrossRefGoogle Scholar
  41. 42.
    A. Katsui, “Crystal growth of superconducting Bi-Sr-Ca-Cu-O compounds from KC1 solution,” Jpn. J. Appl. Phys., 27, No. 5, L844-L845 (1988).Google Scholar
  42. 43.
    A. Katsui and H. Ohtsuka, “Solution growth of Bi-Sr-Ca-Cu-O compounds using alkali chlorides,” J. Cryst. Growth, 91, No. 3, 261–263 (1988).CrossRefGoogle Scholar
  43. 44.
    S. Bosi, T. Puzzer, G. J. Russell, et al., “Large single crystals of YBa2Cu3O7_δ5 superconductors from chloride fluxes,” J. Mater. Sci. Lett., 8, No. 5, 497–500 (1989).CrossRefGoogle Scholar
  44. 45.
    H. J. Scheel and F. Licci, “Crystal growth of YBa2Cu3O7-xJ. Cryst. Growth, 85, No. 4, 607–614 (1987).CrossRefGoogle Scholar
  45. 46.
    A. Katsui and M. Suzuki, “Single crystal growth of Ba(Pb, Bi)O3 from molten KC1 solvent, Jpn. J. Appl. Phys., 21, No. 3, L157–L159 (1982).Google Scholar
  46. 47.
    S. Shamoto, S. Hosoya, M. Sato, et al., “Single crystal growth of high-T c superconductor,” Solid State Commun., 66, No. 2, 195–199 (1988).CrossRefGoogle Scholar
  47. 48.
    L. Trouilleux, G. Dhalenne, A. Revcolevschi, et al., “Growth and anisotropic magnetic behavior of aligned eutectic-type structures in the system La2-xSrxCuO4-copper oxide,” J. Cryst. Growth, 91, No. 3, 268–273 (1988).CrossRefGoogle Scholar
  48. 49.
    J. S. Zhang, J. G. Huang, M. Jiang, et al., “Preparation of Bi-Sr-Ca-Cu-O superconductors by laser floating zone melting technique,” Mater. Lett., 8, No. 12, 46–48 (1989).CrossRefGoogle Scholar
  49. 50.
    S. Hirano and S. Takahashi, “NaOH solution hydrothermal growth and superconducting properties of BaPb1-xBixO3 single crystals,” J. Cryst. Growth, 85, No. 4, 602–606 (1987).CrossRefGoogle Scholar
  50. 51.
    R. A. Laudise, L. F. Schneemeyer, and R. L. Barns, “Crystal growth of high temperature superconductors—problems, successes, opportunities,” J. Cryst. Growth, 85, No. 4, 569–575 (1987).CrossRefGoogle Scholar
  51. 52.
    L. F. Schneemeyer, J. V. Waszczak, T. Sleight, et al., “Superconductivity in YBa2Cu3O7 single crystals,}” Nature (London), 328, No. 6131, 601–603 (1987).CrossRefGoogle Scholar
  52. 53.
    L. Kaiser, F. Holtzberg, B. A. Scott, et al., “Growth of YBa2Cu3Ox single crystals,” J. Appl. Phys., 51, No. 13, 1040–1042 (1987).Google Scholar
  53. 54.
    C. Thomsen, M. Cardona, and B. Gegenheimer, et al., “Untwinned single crystals of YBa2Cu3O7-δ: An optical investigation of the a-b anisotropy,” Phys. Rev. B, 37, No. 16, 9860–9863 (1988).CrossRefGoogle Scholar
  54. 55.
    B. N. Sun, R. Boutellier, H. Schmid, et al, “Growth spirals on single crystals of YBa2Cu3O7-δ,” Physica C (Amsterdam), 157, No. 1, 189–192 (1989).CrossRefGoogle Scholar
  55. 56.
    H. J. Scheel and F. Licci, “Crystal growth of high temperature superconductors”, Mater. Res. Soc. Bull., 13, No. 1, 56–60 (1988).Google Scholar
  56. 57.
    C. Chen, B. E. Watts, B. M. R. Wanklyn, et al., “Phase diagram and single crystal growth of (La, Sr)2CuO4 from cupric oxide solution,” J. Cryst. Growth, 91, No. 4, 659–665 (1988).CrossRefGoogle Scholar
  57. 58.
    P. J. Picone, H. R. Jenssen, and D. K. Gabbe, “Phase diagram and single crystal growth of pure and Si-doped La2CuO4,” J. Cryst. Growth, 91, No. 3, 463–467 (1988).CrossRefGoogle Scholar
  58. 59.
    Y. Hidaka, Y. Enomoto, M. Suzuki, and T. Murakami, “Single crystal growth and properties of high-T c oxide superconductors,” Rev. Electr. Commun. Lab., 36, No. 6, 567–577 (1988).Google Scholar
  59. 60.
    V. V. Voronkov, K. V. Gamayunov, V. M. Ivanovskii, et al., “Growth and properties of single crystals of La2CuO4 and La2-xSrxCuO4},” in: Abstracts of Papers of the First Ail-Union Conf on High-Temperature Superconductivity, Vol. 3 [in Russian], Khar’kov, 20-23 Dec, 1988, Khar’kov (1988), p. 193.Google Scholar
  60. 61.
    T. Hibiya, Y. Nakabayashi, T. Sato, et al, “Ba3Y2Cu2PtO10: newly obtained phase during single crystal growth of Ba2YCu3O7 from platinum crucible,” Jpn. J. Appl. Phys., 28, No. 1, 63–66 (1989).CrossRefGoogle Scholar
  61. 62.
    L. N. Dem’yanets, A. B. Bykov, O. K. Mel’nikov, et al., “Growth of single crystals of high-temperature superconducting materials from nonstoichiometric melts,” in: Extended Abstracts of the Sixth All-Union Conf on Crystal Growth, Vol. 2 [in Russian], 14-19 Nov., Moscow, 1988, Moscow (1988), pp. 364–366.Google Scholar
  62. 63.
    G. A. Emel’chenko, V. M. Masalov, N. V. Abrosimov, et al., “Study of the liquidus in the system La2O3-CuO-CuOo.5 and growth of single crystals of La2CuO4 and (La, Sr)2CuO4,” in: Abstracts of Papers of the Second All-Union Conf. on High-Temperature Superconductivity, Vol. 2 [in Russian], 25-29 Sept., Kiev, 1989, Kiev (1989), pp. 318–319.Google Scholar
  63. 64.
    D. M. De Leeuw, C. A. H. A. Mutsaers, G. P. J. Geelen, et al., “Compounds and phase compatibilities in the system La2O3-SrO-CuO at 950°C,” J. Solid State Chem., 80, No. 1, 276–285 (1989).CrossRefGoogle Scholar
  64. 65.
    L. Er-Rakho, C. Michel, and B. Raveau, “La8-xSrxCU8O20: An oxygen-deficient perovskite built of CUO6, CUO5 and CuO4 polyhedra,” J. Solid State Chem., 73, No. 2, 514–519 (1988).CrossRefGoogle Scholar
  65. 66.
    A. B. Bykov, L. N. Demianets, I. P. Zibrov, et al., “Crystallization of high temperature superconductors from nonstoichiometric melts,” J. Cryst. Growth, 91, No. 3, 302–307 (1988).CrossRefGoogle Scholar
  66. 67.
    N. L. Mitrofanov, A. S. Ivanov, A. V. Izotova, et al., “Domain structure of single crystals of oxide compounds based on Cu, ” in: Superconductivity [in Russian], Kurchatov Inst. At. Energ., Moscow (1988), pp. 12–16.Google Scholar
  67. 68.
    A. B. Bykov, L. N. Dem’yanets, V. Ya. Zakharov, et al., “Superconductivity and crystal structure of single crystals of (La1-xSrx)2CuO4-y,” Pis’ ma Zh. Eksp. Teor. Fiz., 46(Prilozh.), 19–22 (1987).Google Scholar
  68. 69.
    V. I. Simonov, L. A. Muradyan, R. A. Tamazyan, et al., “Ordering of Sr atoms and loss of superconductivity in (La, Sr)2CuO4 crystals,” Pis’ma Zh. Eksp. Teor. Fiz., 48, No. 5, 290–293 (1988).Google Scholar
  69. 70.
    A. S. Ivanov, N. L. Mitrofanov, A. Yu. Rumanova, et al., “Dispersion of phonons and soft phonon modes in La1.9Sr0.1CuO4-y, ” in: Superconductivity [in Russian], Kurchatov Inst. At. Energ., Moscow (1988), pp. 21–29.Google Scholar
  70. 71.
    V. N. Denisov, B. N. Mavrin, V. B. Podobedov, et al., “Raman scattering in La2-xSrxCuO4 single crystals,” Phys. Lett. A, 140, No. 3, 141–142 (1989).CrossRefGoogle Scholar
  71. 72.
    V. N. Denisov, B. N. Mavrin, B. D. Podobedov, et al., “Interaction of fully symmetric phonons with the continuous spectrum in La2_xSrxCuO4 crystals,” Sverkhprovodimost, 2, No. 8, 123–126 (1989).Google Scholar
  72. 73.
    A. S. Ivanov, N. L. Mitrofanov, A. Yu. Rumyantsev, et al, “Phonon dispersion and soft phonon modes in La1.9Sr0.1CuO4-y,” Physica B (Amsterdam), 156-157, No. 4, 910–911 (1989).CrossRefGoogle Scholar
  73. 74.
    S. Takekawa and N. Iyi, “Single crystal preparation of Ba2YCu3Ox from nonstoichiometric melts,” Jpn. J. Appl. Phys., 26, No. 5, L851-L853 (1987).Google Scholar
  74. 75.
    J. S. Zhang, X. Jiang, J. G. Huang, et al., “A preliminary study of solidification behavior of Y-Ba-Cu-O compounds, ” Supercond. Sci. Technol., 1, No. 2, 107–109 (1988).CrossRefGoogle Scholar
  75. 76.
    R. G. Grebenshchikov and V. I. Shitova, “Phase relationships at partial cross sections of the system Y2O3-BaO-CuO(Cu2O), ” in: Abstracts of Papers of the First All-Union Conf. on High-Temperature Superconductivity, Vol. 3 [in Russian], 20-23 Dec, Khar’kov, 1988, Khar’kov (1988), pp. 74–75.Google Scholar
  76. 77.
    K. Oka, K. Nakane, I. Masahiro, et al., “Phase-equilibrium diagram in the ternary system Y2O3-BaO-CuO,” Jpn. J. Appl. Phys., 27, No. 6, L1065–L1067 (1988).CrossRefGoogle Scholar
  77. 78.
    M. Nevriva, E. Poliert, L. Matejkova, and A. Triska, “On the determination of the CuO-BaCuO2 and CuO-YCuO2.5 binary phase diagrams,” J. Cryst. Growth, 91, No. 3, 434–438 (1988).CrossRefGoogle Scholar
  78. 79.
    M. Nevriva, E. Poliert, J. Sestak, et al., “Phase diagram of the pseudobinary BaCuO2-YBa2Cu3O6.5-YCuO2.5 system,” Thermodinam. Acta, 127, No. 2, 395–402 (1988) [see also Thermochim. Acta, 136, 263-278 (1988)].CrossRefGoogle Scholar
  79. 80.
    A. Ono and T. Tanaka, “Preparation of single crystals of the superconductor Ba2YCu3O6.5+x,” Jpn. J. Appl. Phys., 26, No. 5, L825–L827 (1987).CrossRefGoogle Scholar
  80. 81.
    J. Takada, H. Kitaguchi, A. Osaka, et al., “Ba2YCu3Ox crystal formed by peritectic reaction,” Jpn. J. Appl. Phys., 26, No. 10, L1707–L1710(1987).CrossRefGoogle Scholar
  81. 82.
    F. Holtzberg and C. Feild, “Relationship between crystal growth and physical properties in the high temperature superconductor YBa2Cu3O7-δJ. Cryst. Growth, 99(1-4, Pt. 2), 915–921 (1990).CrossRefGoogle Scholar
  82. 83.
    T. Aselage and K. Keefer, “Liquidus relations in Y-Ba-Cu oxides,” J. Mater. Res., 3, No. 6, 1279–1291 (1988).CrossRefGoogle Scholar
  83. 84.
    M. Maeda, M. Kadoi, and T. Ikeda, “The phase diagram of the YO1.5-BaO-CuO ternary system and growth of the YBa2Cu3O7single crystals,” Jpn. J. Appl. Phys., 28, No. 8, 1417–1420 (1989).CrossRefGoogle Scholar
  84. 85.
    G. Balestrino, S. Barbanera, and P. Paroli, “Growth of single crystals of the high-temperature superconductor YBa2Cu3O7-x,” J. Cryst. Growth, 85, No. 4, 585–587 (1987).CrossRefGoogle Scholar
  85. 86.
    F. Licci, P. Tissot, and H. J. Scheel, “Data on the YBa2Cu3O7-xCuOx phase diagram,” J. Less-Common Met., 150, 201–206 (1989).CrossRefGoogle Scholar
  86. 87.
    J. Z. Liu, G. W. Crabtree, A. Umezawa, and Z. Li, “Superconductivity and structure of single crystal YBa2Cu3Ox,” Phys. Lett. A, 121, No. 6, 305–306 (1987).CrossRefGoogle Scholar
  87. 88.
    K. Fischer, R. Hergt, and D. Lizen, “Phase relations and crystal growth of YBa2Cu3O7-δ in the system YO1.5-BaO-CuO,” Cryst. Res. Technol., 23, No. 9, 1169–1175 (1988).CrossRefGoogle Scholar
  88. 89.
    I. V. Aleksandrov, A. B. Bykov, A. F. Goncharov, et al., “Raman scattering in single crystals of high-temperature superconductors YBa2Cu3Ox,” Pis’ma Zh. Eksp. Teor. Fiz., 47, No, 4, 184–187 (1988).Google Scholar
  89. 90.
    I. V. Aleksandrov, A. B. Bykov, I. P. Zibrov, et al., ““New data on the dependence of the critical temperature on the oxygen content in superconducting YBa2Cu3 Ox”, Pis’ma Zh. Eksp. Teor. Fiz., 48, No. 8, 449–452 (1989).Google Scholar
  90. 91.
    I. N. Makarenko, D. V. Nikiforov, A. B. Bykov, et al., “Anisotropy of electrical resistivity in single crystals of the high-temperature superconductor YBa2Cu3 Ox,” Pis’ma Zh. Eksp. Teor. Fiz., 47, No. 2, 52–56 (1988).Google Scholar
  91. 92.
    L. Z. Avdeev, A. B. Bykov, L. N. Dem’yanets, et al., “Electrical, magnetic and structural properties of YBa2Cu3 Ox,ingle crystals, ” Pis’ma Zh. Eksp. Teor. Fiz., 46, No. 5, 196–199 (1987).Google Scholar
  92. 93.
    Y. Ikeda, Y. Oue, K. Inaba, et al., “Phase equilibria in the YO1.5-BaO-SrO-CaO system,” Funtai oyobi Funmatsu Yakin, 35, No. 3, 329–332 (1988).Google Scholar
  93. 94.
    B. S. Chakoumakos, P. S. Ebey, B. C. Sales, et al., “Characterization and superconducting properties of phases in the Bi-Sr-Ca-Cu-O system,” J. Mater. Res., 4, No. 4, 767–780 (1989).CrossRefGoogle Scholar
  94. 95.
    K. Tomomatsu, A. Kurasaku, M. Tominaga, et al., “Phase diagram of BinSrCaCu3_nOy, on the line 1 ≤n ≤ 2,” Appl. Phys. Lett., 55, No. 3, 298–300 (1989).CrossRefGoogle Scholar
  95. 96.
    H. Takei, M. Koike, H. Takeya, et al, “Crystallization from a glassy state in the Bi-Sr-Ca-Cu-O system,” Tech. Rep. Inst. Solid State Phys. A. Univ. Tokyo, No. 2113, 1–19 (1989) [see also Jpn. J. Appl. Phys., Part 2,28, No. 7, LI 193-L1196 (1989)].Google Scholar
  96. 97.
    M. Fukuhara, A. S. Bhalla, R. E. Newnham, et al., “Superconductors in BiO-CuO-(Sr0.5Cao.5)O systemMater. Lett., 6, No. 11-12, 398–400 (1988)CrossRefGoogle Scholar
  97. 98.
    Z. Ren, H. Yan, Y. Jiang, W. Guan, “Growth of superconducting single crystals of composition Bi:Sr:Ca:Cu = 2:2:1:2 in the Bi-Sr-Ca-Cu-O system,” J. Cryst. Growth, 92, No. 3/4, 677–681 (1988).Google Scholar
  98. 99.
    S. Ikegawa, H. Ikeda, and T. Itoh, “Preparations and properties of ceramic high T c superconductors,” Sogo Shikensho Nenpo (Tokyo Daigaku Kogakubu), 47, 79–87 (1988).Google Scholar
  99. 100.
    A. Ono, “Synthesis of the 107 K superconducting phase in the Bi-Sr-Ca-Cu-O system,” Jpn. J. Appl. Phys., 27, No. 7, L1213-L1215 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York  1993

Authors and Affiliations

  • L. N. Dem’yanets
  • A. B. Bykov
  • O. K. Mel’nikov

There are no affiliations available

Personalised recommendations