Advertisement

Flux Growth and Properties of Oxide Crystals

  • V. I. Voronkova
  • V. K. Yanovskii
  • I. V. Vodolazskaya
  • E. S. Shubentsova
Chapter
Part of the Growth of Crystals book series (GROC, volume 19)

Abstract

Growth of single crystals using crystallization from low-melting fluxes, i.e., solvents [1–3], is interesting from several viewpoints. Firstly, this is the most universal method and enables crystals to be prepared from compounds melting with decomposition, experiencing reconstructive phase transitions at extremely high temperatures, etc. Other methods of growing these crystals are not always feasible. Secondly, the flux method is most interesting from a physicochemical aspect since it is based on a knowledge of the phase diagrams of binary or more complicated systems and the properties and structure of the crystal and melt and many other factors. The success of the method mainly depends on the correct choice of the crystal-solvent system. Thirdly, the single crystals obtained using this method are usually highly perfect and have plane-faceted shapes. This enables certain data about the growth mechanisms to be obtained by studying their morphology and the relief of the faces. Fourthly, the flux method is most similar to the growth of crystals under natural conditions and additional information on their genesis can be obtained. In a number of instances, rather large crystals can be produced for some practical applications or others (for example, see a review [4]) using flux crystallization. However, this method is more frequently used for scientific purposes as a means of preparing specimens of new or previously unknown crystals for investigating their structure and properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Timofeeva, Flux Growth of Crystals [in Russian], Nauka, Moscow (1978).Google Scholar
  2. 2.
    D. Elwell and H. J. Scheel, Crystal Growth from High-temperature Solutions, Academic Press, London (1975).Google Scholar
  3. 3.
    A. A. Chernov, E. I. Givargizov, Kh. S. Bagdasarov, et al., Modern Crystallography, Vol. 3 [in Russian], Nauka, Moscow (1980).Google Scholar
  4. 4.
    V. A. Timofeeva, “Progress in flux growth of large crystals,” in: Growth of Crystals, E. I. Givargizov (ed.), Consultants Bureau, New York (1986), pp. 239–250.CrossRefGoogle Scholar
  5. 5.
    V. I. Voronkova, V. K. Yanovskii, and V. A. Koptsik, “Morphology and certain properties of A12O3 crystals grown from tungstate melts,” Dokl. Akad. Nauk SSSR, 177, No. 3, 571–573 (1967).Google Scholar
  6. 6.
    V. I. Voronkova, V. K. Yanovskii, and V. A. Koptsik, “Growth of corundum single crystals from tungstate fluxes,” Izv. Akad. Nauk SSSR, Neorg. Mater., 4, No. 10, 1727–1731 (1968).Google Scholar
  7. 7.
    V. I. Voronkova, V. A. Koptsik, and V. K. Yanovskii, “Method of growing corundum single crystals,” USSR Pat. No. 223,066; Byull. Izobret., No. 31 (1969).Google Scholar
  8. 8.
    D. Elwell, Artificial Precious Stones [Russian translation], Mir, Moscow (1981).Google Scholar
  9. 9.
    V. K. Yanovskii, “Growth of single crystals of high-temperature oxides,” Zh. Vses. Khim. O’va im. D. I. Mendeleeva, 13, No. 2, 134–142 (1968).Google Scholar
  10. 10.
    D. O. Brodichko, V. K. Yanovskii, and V. A. Koptsik, “Growth of MgO single crystals in MgO-P2O5-WO3 and MgO-Na2O-P2O5-WO3 systems,” Izv. Akad. Nauk SSSR, Neorg. Mater., 4, No. 12, 2158–2160 (1968).Google Scholar
  11. 11.
    H. Vora and R. R. Zupp, “Single-crystal growth of magnesium oxide by the flux method,” Mater. Res. Bull., 5, No. 11, 977–982 (1970).CrossRefGoogle Scholar
  12. 12.
    M. A. Gaffar, V. A. Koptsik, and V. K. Yanovskii, “Growth of optical-quality KNbO3 crystals from a flux,” Kristallografiya, 21, No. 3, 626–627 (1976).Google Scholar
  13. 13.
    Yu. S. Kuz’minov, Lithium Niobate and Tantalate, Materials for Nonlinear Optics [in Russian], Nauka, Moscow (1975).Google Scholar
  14. 14.
    V. I. Voronkova, N. F. Evlanova, and V. K. Yanovskii, “Crystallization of LiNbO3 from borate, vanadate, and tungstate fluxes,” Kristallografiya, 23, No. 1, 234–236 (1978).Google Scholar
  15. 15.
    R. F. Belt, G. Gashurov, and Y. S. Liu, “KTP as a harmonic generator for Nd:YAG lasers,” Laser Focus (Littleton, Mass.), 21, No. 10, 110–124 (1985).Google Scholar
  16. 16.
    V. I. Voronkova, S. Yu. Stefanovich, and V. K. Yanovskii, “Ferroelectric phase transitions and properties of nonlinear-optics KTiPO4 crystals and their analogs,” Kvantovaya Elektron. (Moscow), 15, No. 4, 752–756 (1988).Google Scholar
  17. 17.
    V. I. Voronkova and V. K. Yanovskii, “Flux growth and properties of KTiOPO4 crystals,” Izv. Akad. Nauk SSSR, Neorg. Mater., 24, No. 2, 237–277 (1988).Google Scholar
  18. 18.
    V. K. Yanovskii and V. I. Voronkova, “Growth and principal properties of crystals of rare earth and yttrium oxotungstates Ln2WO6,” Izv. Akad. Nauk SSSR, Neorg. Mater., 11, No. 1, 91–94 (1975).Google Scholar
  19. 19.
    V. K. Yanovskii and V. I. Voronkova, “Growth and principal properties of crystals of rare earth and yttrium oxomolybdates Ln2MoO6,” Izv. Akad. Nauk SSSR, Neorg. Mater., 12, No. 1, 140–142 (1976).Google Scholar
  20. 20.
    V. I. Voronkova and V. K. Yanovskii, “Growth of rare earth oxotungstates Ln2WC6 from a flux,” Kristallografiya, 21, No. 1, 236–238 (1976).Google Scholar
  21. 21.
    V. K. Yanovskii and V. I. Voronkova, “Crystallography and properties of Ln2WO6 single crystals,” Kristallografiya, 20, No.3, 579–582 (1975).Google Scholar
  22. 22.
    V. K. Yanovskii and V. I. Voronkova, “Polytypism of La2WO6 crystals,” Kristallografiya, 26, No. 3, 604–606 (1981).Google Scholar
  23. 23.
    V. K. Yanovskii and V. I. Voronkova, “The system Bi2WO6-La2WO6 in the subsolidus region and Bi2WO6,” Zh. Neorg. Khim., 26, No. 2, 549–552 (1981).Google Scholar
  24. 24.
    A. Watanabe, Z. Inoue, and T. Ohsaka, “Synthesis and crystallography of new layered bismuth lanthanum tungstate, Bi2-xLaxWO6 (x = 0.4-1.0),” Mater. Res. Bull., 15, No. 3, 397–404 (1980).CrossRefGoogle Scholar
  25. 25.
    V. I. Voronkova, V. K. Yanovskii, and V. A. Koptsik, “Growth of ß-Ga2O3 and A12(WO4)3 crystals from sodium polytungstate flux,” Vestn. Mosk. Univ., Fiz., Astron., 23, No. 3, 109–112 (1968).Google Scholar
  26. 26.
    V. I. Voronkova, T. G. Kozinskaya, and V. K. Yanovskii, “Growth and properties of Dy2(MoO4)3 crystals,” Kristallografiya, 23, No. 4, 865–867 (1978).Google Scholar
  27. 27.
    R. K. Sviridova, V. I. Voronkova, and S. S. Kvitka, “Spectra of A12O3-3WO3 crystals containing Cr3+ at 290-4.2 K,” Kristallografiya, 15, No. 5, 1077–1078 (1970).Google Scholar
  28. 28.
    K. Petermann and P. Mitzscherlich, “Spectroscopic and laser properties of Cr3+-doped A12(WO4)3 and Sc2(WO4)3,” IEEE J. Quant. Electron., 23, No. 7, 1122–1126 (1987).CrossRefGoogle Scholar
  29. 29.
    V. V. Mikhailin, R. K. Sviridov, B. N. Meleshkin, and V. I. Voronkova, “Study of the optical properties of various tungstate structures containing chromium ions,” in: Spectroscopy of Crystals [in Russian], Nauka, Moscow (1975), pp. 346–353.Google Scholar
  30. 30.
    S. Yu. Stefanovich, V. K. Yanovskii, A. W. Astafyev, et al., “Ferroelectric-superionic conductor phase transitions in MeNbWO6.nH2O (Me = Tl, Rb) crystals,” Jpn. J. Appl Phys., Part 1, 24(Suppl. 24-2), 373–375 (1985).Google Scholar
  31. 31.
    A. V. Astaf’ev, A. A. Bosenko, V. I. Voronkova, et al., “Dielectric and optical properties and ionic conductivity of TlNbWO6and RbNbWO6 crystals,” Kristallografiya, 31, No. 5, 968–973 (1986).Google Scholar
  32. 32.
    N. N. Bydanov, T. S. Chernaya, L. A. Muradyan, et al., “Neutron-diffraction refinement of the atomic structures of RbNbWO6 and TlNbWO6 crystals,” Kristallografiya, 32, No. 3, 623–630 (1987).Google Scholar
  33. 33.
    V. K. Yanovskii, V. I. Voronkova, and V. A. D’yakov, “Tungstates with the hexagonal tungsten bronze structure,” Kristallografiya, 21, No. 5, 976–980 (1976).Google Scholar
  34. 34.
    G. N. Minaeva, V. I. Voronkova, and V. K. Yanovskii, “New compounds with the hexagonal tungsten bronze structure with thermal dielectric anomalies,” Kristallografiya, 24, No. 2, 276–279 (1979).Google Scholar
  35. 35.
    V. K. Yanovskii, V. I. Voronkova, and S. Yu. Stefanovich, “Crystallography, polymorphism, and properties of potassium tungstate-niobate,” Kristallografiya, 22, No. 6, 1283–1287 (1977).Google Scholar
  36. 36.
    I. P. Klimova, V. I. Voronkova, S. A. Okonenko, et al., “Growth and certain properties of RbNbW2O9 crystals,” Kristallografiya, 25, No. 1, 119–124 (1980).Google Scholar
  37. 37.
    V. K. Yanovskii, V. I. Voronkova, and I. P. Klimova, “Ferroelectrics with the structure of hexagonal tungsten bronze type,” Ferroelectrics, 48, No. 4, 239–246 (1983).CrossRefGoogle Scholar
  38. 38.
    P. Ju Lin and L. A. Bursill, “High-resolution electron microscopic study of the hexagonal bronze potassium niobium tungstate (PNT),” Ferroelectrics, 74, No. 1, 23–36 (1987).CrossRefGoogle Scholar
  39. 39.
    V. I. Voronkova and V. K. Yanovskii, “Growth of Bi2WO6 single crystals,” Kristallografiya, 22, No. 2, 429–430 (1977).Google Scholar
  40. 40.
    V. K. Yanovskii and V. I. Voronkova, “Polymorphism and properties of Bi2WO6 and Bi2MoO6,” Phys. Status Solidi A, 93, No. 1, 57–66 (1986).CrossRefGoogle Scholar
  41. 41.
    V. K. Yanovskii, V. I. Voronkova, and I. A. Rudenkova, “Structure and properties of layered crystalline phases in the system Bi2WO6-Bi4Ti3O12,” Kristallografiya, 29, No. 2, 298–303 (1984).Google Scholar
  42. 42.
    V. K. Yanovskii and V. I. Voronkova, “The structure and ferroelectric properties of layered compounds in the system Bi2WO6-Bi4Ti3O12,” Phys. Status Solidi A, 101, No. 1, 45–50 (1987).CrossRefGoogle Scholar
  43. 43.
    V. K. Yanovskii and V. I. Voronkova, “Structure, polymorphism, and ferroelectric properties of mixed layered compounds containing Bi,” Izv. Akad. Nauk SSSR,Neorg. Mater., 22, No. 12, 2029–2033 (1986).Google Scholar
  44. 44.
    V. K. Yanovskii and V. I. Voronkova, “Ferroelectric compounds containing Bi with the mixed layered perovskite structure,” Kristallografiya, 23, No. 5, 1280–1283 (1988).Google Scholar
  45. 45.
    V. K. Yanovskii, V. I. Voronkova, Yu. E. Roginskaya, and Yu. N. Venevtsev, “Rapid anion transport in Bi2WO6crystals,” Fiz. Tverd. Tela (Leningrad), 24, No. 9, 2829–2831 (1982).Google Scholar
  46. 46.
    P. J. Picone, H. P. Jenssen, and D. R. Gabbe, “Top seed solution growth of La2Cu04,” J. Cryst. Growth, 85, No. 7, 576–580 (1987).CrossRefGoogle Scholar
  47. 47.
    M. W. Shafer, T. Penney, and B. L. Olson, “Correlation of T c with hole concentration in La2_xSrxCu superconductors,” Phys. Rev. B, 36, No. 7, 4047–4050 (1987).CrossRefGoogle Scholar
  48. 48.
    I. V. Vodolazskaya, V. I. Voronkova, R. S. Gvozdover, et al., “Growth and properties of crystals of high-temperature superconductors of the RBa2Cu3O7-x and La2CuO4 types and behavior of these compounds at high temperatures” in: Abstracts of Papers of the Seventh All-Union Conference on Crystal Growth [in Russian], Moscow (1988}), Part 2, p. 3Google Scholar
  49. 49.
    R. S. Roth, K. L. Davis, and J. R. Dennis, “Phase equilibrium and crystal chemistry in the system Ba-Y-Cu-O,” Adv. Ceram. Mater., 2, No. 3B, 303–313 (1987).Google Scholar
  50. 50.
    D. O. Brodichko and V. K. Yanovskii, “Preparation of zinc oxide crystals by hydrolysis of ZnF2 in the melt,” Uch. Zap. Tiraspol. Gos. Pedagog. Inst., 21, No. 1, 7–11 (1970).Google Scholar
  51. 51.
    V. K. Yanovskii and V. I. Voronkova, “Refinement of phase equilibria in the system La2O3-WO3 near the 1:1 composition,” Izv. Akad. Nauk SSSR, Neorg. Mater., 19, No. 3, 416–421 (1983).Google Scholar
  52. 52.
    V. K. Yanovskii and V. I. Voronkova, “Flux growth and characteristics of some ferroelectric and related crystals,” J. Cryst. Growth, 52, No. 2, 654–659 (1981).CrossRefGoogle Scholar
  53. 53.
    N. Z. Evzikova, “Principles of the structural-geometric analysis of crystal faces,” Zap. Vses. Mineralog. Obshchestva, 94, No. 2, 120–142 (1965).Google Scholar
  54. 54.
    V. I. Voronkova and V. K. Yanovskii, “Morphology of KTiOPO4 crystals,” Kristallografiya, 31, No. 1, 207–208 (1986).Google Scholar
  55. 55.
    V. K. Yanovskii, V. I. Voronkova, and V. A. Koptsik, “Effect of adsorption of a tungstate melt on the shape and growth mechanism of corundum crystals,” Kristallografiya, 15, No. 2, 362–366 (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York  1993

Authors and Affiliations

  • V. I. Voronkova
  • V. K. Yanovskii
  • I. V. Vodolazskaya
  • E. S. Shubentsova

There are no affiliations available

Personalised recommendations