Advertisement

Identification of a Trypsin-Like Serine Proteinase Domain Encoded by ORF la of the Coronavirus IBV

  • D. X. Liu
  • I. Brierley
  • T. D. K. Brown
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 380)

Abstract

Avian infectious bronchitis virus (IBV) is the prototype species of the Coronaviridae, a family of enveloped viruses with large positive-stranded RNA genomes. The genomic RNA of IBV is 27.6 kilobases (kb) in length and contains at least 10 distinct open reading frames (ORFs) (Boursnell et al., 1987). Available evidence suggests that five subgenomic mRNA species are produced in virus-infected cells. These mRNAs (mRNAs 2–6) together with the genome-length mRNA (mRNAl) range in length from about 2 kb to 27.6 kb, and have been shown to share a common 3’ -terminus and to form a nested set structure (Stern and Kennedy, 1980ab). Three of these, mRNAs 2,4 and 6, encode the major virion structural proteins spike (S), membrane (M), and nucleocapsid (N), respectively (Stern and Sefton, 1984). Two of the other mRNAs, mRNA 3 and mRNA 5, have recently been shown to encode three and two viral proteins respectively (Smith et al., 1990; Liu et al., 1991; Liu and Inglis, 1992).

Keywords

Vero Cell Infectious Bronchitis Virus Proteinase Domain Extra Amino Acid Avian Infectious Bronchitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allaire, M., M. M.Chernaia, B. A. Malcolm, and M. N. G. James. 1994. Picornaviral 3C cycteineproteinases have a fold similar to chymotrypsin-like serineproteinases. Nature 369:72–76.PubMedCrossRefGoogle Scholar
  2. Bazan, J. F., and R. J. Fletterick. 1988.Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc. Natl.Acad. Sci. USA 85:7872–7876.PubMedCrossRefGoogle Scholar
  3. Boursnell, M. E.G., T. D. K. Brown, I. J. Foulds, P. F. Green, F. M. Tomley, and M. M. Binns.1987. Completionof the sequence of the genome of the coronavirus avianinfectious bronchitis virus. J. gen. Virol. 68:57–77.PubMedCrossRefGoogle Scholar
  4. Brierley, I., M.E. G. Boursnell, M. M. Binns, B. Bilimoria, V C. Blok, T. D. K. Brown, and S.C. Inglis. 1987.An efficient ribosomal frame-shifting signal in thepolymerase-encoding region of the coronavirus IBV EMBO. J. 6:3779–3785.Google Scholar
  5. Brierley, I., P.Digard, and S. C. Inglis. 1989. Characterisation of an efficient coronavirusribosomal frameshift-ingsignal: requirement for an RNA pseudoknot. Cell 57:537–547.PubMedCrossRefGoogle Scholar
  6. Fuerst, T. R., E.G. Niles, F. W. Studier, and B. Moss. 1986. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesises bacteriophage T7 RNApolymerase. Proc. Natl. Acad. Sci. USA 83:8122–8127.PubMedCrossRefGoogle Scholar
  7. Gorbalenya, A. E.,V. M. Blinov, and A. P. Donchenko. 1986. Poliovirus-encoded proteinase 3C: apossibleevolutionary link between cellular serine and cysteineproteinase families. FEBS lett. 194:253–257.PubMedCrossRefGoogle Scholar
  8. Gorbalenya, A. E.,E. V Koonin, A. P. Donchenko, and V M. Blinov. 1989. Coronavirus genome:predictionof putative functional domains in the non-structural polyprote in by comparativeamino acid sequenceanalysis.Nucleic Acids Res. 17:4847–4860.PubMedCrossRefGoogle Scholar
  9. Liu, D. X., D.Cavanagh, P. Green, and S. C. Inglis. 1991. A polycistronic mRNA specified bythe coronavirusinfectiousbronchitis virus. Virology 184:531–544.PubMedCrossRefGoogle Scholar
  10. Liu, D. X., and S. C. Inglis. 1992.Identification of two new polypeptides encoded by mRNA5 of the coronavirusinfectious bronchitis virus. Virology 186:342–347.PubMedCrossRefGoogle Scholar
  11. Liu, D. X.,Brierley, I., Tibbies, K. W., and Brown, T. D. K. (1994). A 100-kilodaltonpolypeptide encoded byopen reading frame (ORF) lb of the coronavirus infectious bronchitis virus is processed by ORF laproducts.J. Virol. 68, in press.Google Scholar
  12. Matthews, D. A., W.W. Smith, R. A. Ferre, B. Condon, G. Budahazi, W. Sisson, J. E. Villafranca, C.A. Janson,H. E. Mcelroy, C. L. Gribskov, and S. Worland. 1994.Structure of human rhinovirus 3C protease reveals atrypsin-like polypeptide fold, RNA-binding site, and means for cleavingprecursor polyprotein.Cell 77:761–771.PubMedCrossRefGoogle Scholar
  13. Oberst, M. D., T. J. Collan, M. Gupta, C. R. Peura, J. D. Zydlewski, P.Sudarsanan, and T. Glen Lawson. 1993. Theencephalomyocarditis virus 3C protease is rapidly degraded by an ATP-dependentproteolyticsystemin reticulocyte lysate. Virology 193:28–40.PubMedCrossRefGoogle Scholar
  14. Palmenberg, A. C. 1990. Proteolytic processing of picornaviral polyprotein. Annu.Rev. Microbiol. 44:603–623.PubMedCrossRefGoogle Scholar
  15. Smith, A. R., M. E. G. Boursnell, M. M.Binns, T. D. K. Brown, and S. C. Inglis. 1990. Identification of a new membrane-associated polypeptide specified by the coronavirus infectiousbronchitis virus. J. gen.Virol.71:3–11.PubMedCrossRefGoogle Scholar
  16. Stern, D. F. and S. I. T. Kennedy. 1980a. Coronavirusmultiplication strategy. I. Identification and characterisation of virus specified RNA species to the genome. J. Virol.34:665–674.PubMedGoogle Scholar
  17. Stern, D. F. and S. I. T. Kennedy. 1980b. Coronavirusmultiplication strategy. II. Mapping the avian infectious bronchitis virus intracellular RNA species to the genome. J. Virol.36:440–449.PubMedGoogle Scholar
  18. Stern, D. F. and B. M. Sefton. 1984. Coronavirusmultiplication: location of genes for virion proteins on the avian infectious bronchitis virus genome. J. Virol. 50:22–29.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • D. X. Liu
    • 1
  • I. Brierley
    • 1
  • T. D. K. Brown
    • 1
  1. 1.Division of Virology, Department of PathologyUniversity of CambridgeCambridgeUK

Personalised recommendations