Coexpression and Association of the Spike Protein and the Membrane Protein of Mouse Hepatitis Virus

  • Dirk-Jan E. Opstelten
  • Martin J. B. Raamsman
  • Karin Wolfs
  • Marian C. Horzinek
  • Peter J. M. Rottier
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 380)


The M and S envelope glycoproteins of mouse hepatitis virus associate in the process of virus assembly. We have studied the intrinsic properties of M/S heterocomplexes by coexpressing M and S in the absence of other coronaviral proteins. The formation of M/S complexes under these conditions indicates that M and S can interact independently of other coronaviral factors. Pulse-chase analysis revealed that M and S associate in a pre-Golgi compartment. M/S complexes are efficiently transported beyond the coronavirus budding compartment to the Golgi complex. The failure to detect complexes at the surface of coexpressing cells demonstrated that they are retained intracellularly. Thus, coexpression of the envelope glycoproteins drastically affects the intracellular transport of the S protein: instead of being transported to the cell surface, S is retained intracellularly by its association with M.


Viral Protein Golgi Complex Envelope Glycoprotein Virus Assembly Detergent Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Opstelten, D.-J. E., M. C. Horzinek, and P. J. M. Rottier. Complex formation between the spike protein and the membrane protein during mouse hepatitis virus assembly. Adv. Exp. Med. Biol. 1994;342:189– 195.CrossRefGoogle Scholar
  2. 2.
    Rottier, P. J. M., M. C. Horzinek, and B. A. M. van der Zeijst. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effects of tunicamycin. J. Virol. 1981;40:350–357.PubMedGoogle Scholar
  3. 3.
    Holmes, K. V., E. W. Doller, and L. S. Sturman. Tunicamycin resistant glycosylation of a coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology 1981;115:334–344.PubMedCrossRefGoogle Scholar
  4. 4.
    Tooze, J., S. A. Tooze, and G. Warren. Replication of coronavirus MHV-A59 in sac cells: determination of the first site of budding of progeny virions. Eur. J. Cell Biol. 1984;33:281–293.PubMedGoogle Scholar
  5. 5.
    Krijnse-Locker, J., M. Ericsson, P. J. M. Rottier, and G. Griffiths. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J. Cell Biol. 1994;124:55–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Klumperman, J., J. Krijnse Locker, A. Meijer, M. C. Horzinek, H. J. Geuze, and P. J. M. Rottier. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J. Virol. 1994;in press.Google Scholar
  7. 7.
    Dubois-Dalcq, M., K. V. Holmes, and B. Rentier. Assembly of enveloped RNA viruses. Springer-Verlag, Vienna 1984.CrossRefGoogle Scholar
  8. 8.
    Pettersson, R. F. Protein localization and virus assembly at intracellular membranes. Curr. Top. Microbiol. Immunol. 1991;170:67–106.PubMedCrossRefGoogle Scholar
  9. 9.
    Rottier, P. J. M., and J. K. Rose. Coronavirus El glycoprotein expressed from cloned cDNA localizes to the Golgi region. J. Virol. 1987;61:2042–2045.PubMedGoogle Scholar
  10. 10.
    Krijnse Locker, J., G. Griffiths, M. C. Horzinek, and P. J. M. Rottier. O-glycosylation of the coronavirus M protein: differential localization of sialyltransferases inN-and O-linked glycosylation. J. Biol. Chem. 1992;267:14094–14101.Google Scholar
  11. 11.
    Fuerst, T. R., E. G. Niles, F. W. Studier, and B. Moss. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesize bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 1986;83:8122–8126.PubMedCrossRefGoogle Scholar
  12. 12.
    Opstelten, D.-J. E., P. de Groote, M. C. Horzinek, H. Vennema, and P. J. M. Rottier. Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins. J. Virol. 1993;67:7394–7401.PubMedGoogle Scholar
  13. 13.
    Opstelten, D.-J. E., P. de Groote, M. C. Horzinek, and P. J. M. Rottier. Folding of the mouse hepatitis virus spike protein and its association with the membrane protein. Arch. Virol. (Suppl.) 1994;9:319–328.Google Scholar
  14. 14.
    Tooze, S. A., J. Tooze, and G. Warren. Site of addition of N-acetyl-galactosamine to the E1 glycoprotein of mouse hepatitis virus-A59. J. Cell Biol. 1988;106:1475–1487.PubMedCrossRefGoogle Scholar
  15. 15.
    Vennema, H., P. J. M. Rottier, L. Heijnen, G. J. Godeke, M. C. Horzinek, and W. J. M. Spaan. Biosynthesis and function of the coronavirus spike protein. Adv. Exp. Med. Biol. 1990;276:9–19.PubMedCrossRefGoogle Scholar
  16. 16.
    Yu, X., W. Bi, S. R. Weiss, and J. L. Leibowitz. Mouse hepatitis virus gene 5b protein is a new virion envelope protein. Virology 1994;202:1018–1023.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Dirk-Jan E. Opstelten
    • 1
  • Martin J. B. Raamsman
    • 1
  • Karin Wolfs
    • 1
  • Marian C. Horzinek
    • 1
  • Peter J. M. Rottier
    • 1
  1. 1.Institute of Virology, Department of Infectious Diseases and Immunology, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands

Personalised recommendations