Protection of Cats from Infectious Peritonitis by Vaccination with a Recombinant Raccoon Poxvirus Expressing the Nucleocapsid Gene of Feline Infectious Peritonitis Virus

  • T. L. Wasmoen
  • N. P. Kadakia
  • R. C. Unfer
  • B. L. Fickbohm
  • C. P. Cook
  • H-J. Chu
  • W. M. Acree
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 380)


Feline Infectious Peritonitis Virus (FIPV) is a coronavirus that induces an often fatal, systemic infection in cats. Various vaccines designed to prevent FIPV infection have been shown to exacerbate the disease, probably due to immune enhancement mediated by virus-specific immunoglobulins against the outer envelope (S) protein. An effective vaccine would be one that induces cell-mediated immunity without disease enhancing antibodies. In this report, we describe the use of a recombinant raccoon poxvirus that expresses the gene encoding the nucleocapsid protein of FIPV (rRCNV-FIPV N) as an effective vaccine against FlPV-induced disease. Cats were parenterally or orally vaccinated twice, three weeks apart. Cats were then orally challenged with Feline Enteric Coronavirus (FECV), which induces a subclinical infection that can cause enhancement of subsequent FIPV infection. Three weeks later, cats were orally challenged with FIPV. The FIPV challenge induced a fatal infection in 4/5 (80%) of the controls. On the other hand, all five cats vaccinated subcutaneously with rRCNV-FIPV N showed no signs of disease after challenge with FIPV. Four of the five subcutaneous vaccinates survived an additional FIPV challenge. Vaccination with rRCNV-FIPV N induced serum IgG antibody responses to FIPV nucleocapsid protein, but few, if any, FIPV neutralizing antibodies. In contrast to the controls, protected vaccinates maintained low FIPV serum neutralizing antibody titers after FIPV challenge. This suggests that the protective immune response involves a mechanism other than humoral immunity consisting of FIPV neutralizing antibodies.


Vero Cell Dengue Hemorrhagic Fever Nucleocapsid Protein Subclinical Infection Outer Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lai, M.M.C. 1990. Coronavirus: Organization, replication, and expression of genome. Annu. Rev. Microbiol. 44: 303–333.PubMedCrossRefGoogle Scholar
  2. 2.
    Spaan, W., Cavanagh, D., and Horzinek, M.C. 1988. Coronaviruses: Structure and genome expression. J. Gen. Virol. 69: 2939–2952.PubMedCrossRefGoogle Scholar
  3. 3.
    Boyle, J.F., Pedersen, N.C., Everman, J.F., McKeirnan, A.J., Ott, R.L., and Black, J.W. 1984. Plaque assay, polypeptide compositin and immunochemistry of feline infectious peritonitis virus and feline enteric coronavirus. Adv. Exp. Med. Biol. 173: 133–147.PubMedCrossRefGoogle Scholar
  4. 4.
    Horzinek, M.C., Ederveen, J., Egberink, H., Jacobse-Geels, H.E.L.,Niewold, T., and Prins, J. 1986. Virion polypeptide specificity of immune complexes in cats inoculated with feline infectious peritonitis virus. Amer.J. Vet. Res. 47: 754–761.PubMedGoogle Scholar
  5. 5.
    De Groot, R.J., Van Leen, R.W., Dalderup, M.J.M., Vennema, H., Horzinek, M.C., and Spann, W.J.M. 1989. Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virol. 171:493–502.CrossRefGoogle Scholar
  6. 6.
    Vennema, H., Rottier, P.J.M., Heijnen, L., Godeke, G.J., Horzinek, M.C., and Spaan, W.J.M. 1990. Biosynthesis and function of the coronavirus spike protein. Adv. Exp. Med. Biol. 276: 9–19.PubMedCrossRefGoogle Scholar
  7. 7.
    Pedersen, N.C. 1987. Virologic and immunologic aspects of feline infectious peritonitis virus infection. Adv. Exp. Med. Biol. 218: 529–550.PubMedCrossRefGoogle Scholar
  8. 8.
    Pedersen, N.C., and Black, J.W. 1983. Attempted immunization of cats against feline infectious peritonitis using a virulent live virus or sublethal amonts of virulent virus. Am. J. Vet. Res. 44: 229–234.PubMedGoogle Scholar
  9. 9.
    Pedersen, N.C., Boyle, J.F., Floyd, K., Fudge, A., and Barker, J. 1981. An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am. J. Vet. Res. 42: 368–377.PubMedGoogle Scholar
  10. 10.
    Pedersen, N.C., Evermann, J.F., McKeirnan, A.J., and Ott, R.L. 1984. Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683. Am. J. Vet. Res. 45: 2580–2585.PubMedGoogle Scholar
  11. 11.
    Stoddart, C.A., Barlough, J.E., Baldwin, CA., and Scott, F.W. 1988. Attempted immunization of cats against feline infectious peritonitis using canine coronavirus. Res. Vet. Sci. 45: 383–388.PubMedGoogle Scholar
  12. 12.
    Woods, R.D., and Pedersen, N.C. 1979. Cross-protection studies between feline infectious peritonitis and porcine transmissible gastroenteritis viruses. Vet. Microbiol. 4: 11–16.CrossRefGoogle Scholar
  13. 13.
    Vennema, H., De Groot, R.J., Harbour, D.A., Dalderup, M., Jones, T.G., Horzinek, M.C., and Spaan, W.J.M. 1990. Early death after feline peritonitis virus challenge due to recombinant vaccinia virus immunization. J. Virol. 64: 1407–1409.PubMedGoogle Scholar
  14. 14.
    Dale, B., Yamanaka, M., Acree, W.M., Chavez, L. Felin infectious peritonitis virus diagnostic tools. European Patent Application 0, 376,744, Published July 4, 1990.Google Scholar
  15. 15.
    Mackett, M., Smith, G.L., and Moss, B. 1982. Vaccinia virus: A selectable eukaryotic cloning and expression vector. Proc. Natl. Acad. Sci. USA 79: 7415–7419.PubMedCrossRefGoogle Scholar
  16. 16.
    Stoddart, C.A., and Scott, F.W. 1988. Isolation and identification of feline peritoneal macrophages for in vitro studies of coronavirus-macrophage interactions. J. Leukocyte Biol. 44: 319–328.PubMedGoogle Scholar
  17. 17.
    Ingersoll, J.D., and Wylie, D.E. 1988. Comparison of serologic assays for measurement of antibody response to coronavirus in cats Am. J. Vet. Res. 49:1472.Google Scholar
  18. 18.
    Chu, H-J., Chavez, L.G., Blumer, B.M., Sebring R.W., Wasmoen, T.L., and Acree, W.M. Immunogenicty and efficacy study of a commercial Borrelia burgdorferi bacterin. J. Am. Vet. Med. Assoc. 201:403–411, 1992.PubMedGoogle Scholar
  19. 19.
    Olson, C.W., Corapi, W.V., Ngichabe, C.K., Baines, J.D., and Scott, F.W. 1992. Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages. J. Virol. 66: 956–965.Google Scholar
  20. 20.
    Weiss, R.C., and Scott, F.W. 1981. Antibody-mediated enhancement of disease in feline infectious peritonitis: Comparison with dengue hemorrhagic fever. Comp. Immunol. Microbiol. Infect. Dis. 4: 175–189.PubMedCrossRefGoogle Scholar
  21. 21.
    Vennema, H., De Groot, R.J., Harbour, D.A., Horzinek, M.C., and Spaan, W.J.M. 1991. Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens. Virol. 181: 327–335.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • T. L. Wasmoen
    • 1
  • N. P. Kadakia
    • 1
  • R. C. Unfer
    • 1
  • B. L. Fickbohm
    • 1
  • C. P. Cook
    • 1
  • H-J. Chu
    • 1
  • W. M. Acree
    • 1
  1. 1.Biological Research and DevelopmentFort Dodge LaboratoriesFort DodgeUSA

Personalised recommendations