Development of Protection against Coronavirus Induced Diseases

A Review
  • Luis Enjuanes
  • Cristian Smerdou
  • Joaquín Castilla
  • Inés M. Antón
  • Juan M. Torres
  • Isabel Sola
  • José Golvano
  • Jose M. Sánchez
  • Belén Pintado
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 380)


Current coronavirus vaccines are classical vaccines, i. e., are based on live attenuated coronavirus. These vaccines provide protection against certain strains of infectious bronchitis virus (IBV) and mouse hepatitis virus (MHV), and with variable results against bovine coronavirus (BCV) and transmissible gastroenteritis virus (TGEV).


Internal Ribosome Entry Site Antigenic Site Helper Virus Mouse Hepatitis Virus Transmissible Gastroenteritis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Antón, I. M, González, S., Bullido, M. J., Suñé, C., Meloen, R. H., Borrás-Cuesta, F., Enjuanes, L. Immunodominant T cell epitopes of transmissible gastroenteritis virus major structural proteins. J. Virol. 1994. In press.Google Scholar
  2. 2.
    Armstrong, J., Niemann, H., Smeekens, S., Rottier, P., Warren, G. Sequence and topology of a model intracellular membrane protein. Nature 1984; 308: 751–752.PubMedCrossRefGoogle Scholar
  3. 3.
    Baker, S. C, Lai, M. M. C. An In vitro system for the leader-primed transcription of coronavirus messenger RNAs. EMBO J. 1990; 9: 4173–4179.PubMedGoogle Scholar
  4. 4.
    Ball, A. L. cis-acting requirements for the replication of flock house virus RNA2. J. Virol. 1993; 67: 3544–3551.PubMedGoogle Scholar
  5. 5.
    Bett, A. J., Prevec, L., Graham, F. L. Packaging capacity and stability of human Adenovirus type 5 vectors. J.Virol. 1993;67:5911–5921.PubMedGoogle Scholar
  6. 6.
    Boots, A. M., Van-Lierop, M. J., Kusters, J. G., Van-Kooten, G. J., Van-der-Zeijst, B. A., Hensen, E. J. MHC ClassII-restricted T-cell hybridomas recognizing the nucleocapsid protein of avian coronavirus IBV. Immunology 1991; 72: 10–14.PubMedGoogle Scholar
  7. 7.
    Boots, A. M. H., Benaissatrouw, B. J., Hesselink, W., Rijke, E., Schrier, C., Hensen, E. J. Induction of anti-viral immune responses by immunization with recombinant-DNA encoded avian coronavirus nucleocapsid protein. Vaccine 1992; 10: 119–124.PubMedCrossRefGoogle Scholar
  8. 8.
    Boots, A. M. H., Kusters, J. G., Vannoort, J. M., Zwaagstra, K. A., Rijke, E., Vanderzeijst, B. A. M., Hensen, E. J. Localization of a T-cell epitope within the nucleocapsid protein of avian coronavirus. Immunology 1991; 74: 8–13.PubMedGoogle Scholar
  9. 9.
    Boursnell, M. E., Brown, T. D. K., Binns, M. M. Sequence of the membrane protein gene from avian coronavirus IBV. Virus Res. 1984 1: 303–313.PubMedCrossRefGoogle Scholar
  10. 10.
    Bousquet, F., Martin, C, Girardeau, J. P., Mechin, M. C., Vartanian, M. d. CS31A capsule-like antigen as an exposure vector for heterologous antigenic determinants. Infec. Immun. 1994; 62: 2553–2561.Google Scholar
  11. 11.
    Bredenbeeck, P. J., Rice, C. M. Animal RNA virus expression systems. Sem. Virol. 1992 3: 297–310.Google Scholar
  12. 12.
    Brown, C. S., Welling-Wester, S., Feijlbrief, M., Van Lent, J. W. M., Spaan, W. J. M. Chimeric Parvovirus B19 capsids for the presentation of foreign epitopes. Virology 1994; 198: 477–488.PubMedCrossRefGoogle Scholar
  13. 13.
    Buchmeier, M. J., Lewicki, H. A., Talbot, P. J., Knobler, R. L. Murine hepatitis virus-4 (strain JHM)-induced neurologic disease is modulated in vivo by monoclonal antibody. Virology 1984; 132: 261–270.PubMedCrossRefGoogle Scholar
  14. 14.
    Castilla, J., Sola, I., Pintado, B., Hennighausen, L., Enjuanes, L. Expression of immunoglobulin genes in the mammary gland. Resistance to virus infection. 1994. Fundación Juan March, Madrid, Spain.Google Scholar
  15. 15.
    Cavanagh, D., Davis, P. J., Derbyshire, J. H., Peters, R. W. Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. J. Gen. Virol. 1986; 67: 1435–1442.PubMedCrossRefGoogle Scholar
  16. 16.
    Cavanagh, D., Davis, P. J., Mockett, A. P. Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralizing epitopes. Virus Res. 1988; 11: 141–150.PubMedCrossRefGoogle Scholar
  17. 17.
    Cavanagh, D., Derbyshire, J. H., Davis, P. J., Peters, R. W. Induction of humoral neutralising and haemagglutination-inhibiting antibody by the spike protein of avian infectious bronchitis virus. Avian Pathol. 1984; 13: 573–583.PubMedCrossRefGoogle Scholar
  18. 18.
    Correa, I., Gebauer, F., Bullido, M. J., Suñé, C, Baay, M. F. D., Zwaagstra, K. A., Posthumus, W. P. A., Lenstra, J. A., Enjuanes, L. Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus. J. Gen. Virol. 1990; 71: 271–279.PubMedCrossRefGoogle Scholar
  19. 19.
    Correa, I., Jiménez, G., Suñé, C, Bullido, M. J., Enjuanes, L. Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus. Res. 1988; 10: 77–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Daniel, C, Anderson, R., Buchmeier, M. J., Fleming, J. O., Spaan, W. J. M., Wege, H., Talbot, P. J. Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of a complex tridimensional structure. J. Virol. 1993; 67: 1185–1194.PubMedGoogle Scholar
  21. 21.
    De Groot, R. J., Andeweg, A. C., Horzinek, M. C., Spaan, W. J. M. Sequence analysis of the 3’ end of the feline coronavirus FIPV 79–1146 genome: comparison with the genome of porcine coronavirus TGEV reveals large insertions. J. Virol. 1988; 167: 370–376.Google Scholar
  22. 22.
    De Groot, R. J., Vandermost, R. G., Spaan, W. J. M. The fitness of defective interfering murine coronavirus-DI-a and its derivatives is decreased by nonsense and frameshift mutations. J. Virol. 1992; 66: 5898–5905.PubMedGoogle Scholar
  23. 23.
    Delmas, B., Gelfi, J., Laude, H. Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. J. Gen. Virol. 1986; 67: 1405–1418.PubMedCrossRefGoogle Scholar
  24. 24.
    Delmas, B., Rasschaert, D., Godet, M., Gelfi, J., Laude, H. Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike protein. J. Gen. Virol. 1990; 71: 1313–1323.PubMedCrossRefGoogle Scholar
  25. 25.
    Deregt, D., Babiuck, L. A. Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology 1987; 68: 41–420.Google Scholar
  26. 26.
    Enjuanes, L., Van der Zeijst, B. A. M. Molecular basis of transmissible gastroenteritis coronavirus (TGEV) epidemiology. In: Siddell S. G., (eds), Coronaviruses. Plenum Press, New York 1995. In press.Google Scholar
  27. 27.
    Fleming, J. O., Shubin, R. A., Sussman, M. A., Casteel, N., Stohlman, S. A. Monoclonal antibodies to the matrix (El) glycoprotein of mouse hepatitis virus protect mice from encephalitis. Virology 1989; 168: 162–167.PubMedCrossRefGoogle Scholar
  28. 28.
    Flory, E., Pfleiderer, M., Stuhler, A., Wege, H. Induction of protective immunity against coronavirus-induced encephalomyelitis: evidence for an important role of CD8+ T cells in vivo. Eur. J. Immunol 1993; 23: 1757–1761.PubMedCrossRefGoogle Scholar
  29. 29.
    Garwes, D. J., Lucas, M. H., Higgins, D. A., Pike, B. V, Cartwright, S. F. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 1978; 3: 179–190.CrossRefGoogle Scholar
  30. 30.
    Gebauer, F., Posthumus, W. A. P., Correa, I., Suñé, C, Sánchez, C. M., Smerdou, C., Lenstra, J. A., Meloen, R., Enjuanes, L. Residues involved in the formation of the antigenic sites of the S protein of transmissible gastroenteritis coronavirus. Virology 1991; 183: 225–238.PubMedCrossRefGoogle Scholar
  31. 31.
    Godet, M., L’Haridon, R., Vautherot, J. F., Laude, H. TGEV coronavirus ORF4 encodes a membrane protein that is incorporated into virions. Virology 1992; 188: 666–675.PubMedCrossRefGoogle Scholar
  32. 32.
    Godet, M., Rasschaert, D., Laude, H. Processing and antigenicity of entire and anchor-free spike glycoprotein-S of coronavirus TGEV expressed by recombinant baculovirus. Virology 1991; 185: 732–740.PubMedCrossRefGoogle Scholar
  33. 33.
    Hasony, H. J., MacNaughton, M. R. Antigenicity of mouse hepatitis virus strain 3 subcomponents in C57 strain mice. Arch. Virol. 1981; 69: 33–41.PubMedCrossRefGoogle Scholar
  34. 34.
    Heemskerk, M. H. M., Schoemaker, H. M., Spaan, W. J. M., Boog, C. J. P. Induction of MHC class II-restricted CD4+ cytotoxic T cells by MHV-A59. European Immunology Meeting. 1994. Barcelona, Spain. W29.Google Scholar
  35. 35.
    Holmes, K. V, Doller, E. W., Behnke, J. N. Analysis of the functions of coronavirus glycoproteins by differential inhibition of synthesis with tunicamycin. Adv. Exp. Med. Biol. 1981; 142: 133.PubMedGoogle Scholar
  36. 36.
    Ignatovic, J., McWaters, P. G. Monoclonal antibodies to three structural proteins of avian infectious bronchitis virus : characterization of epitopes and antigenic differentiation of Australian strains. J. Gen. Virol. 199172:2915–2922.CrossRefGoogle Scholar
  37. 37.
    Joo, M., Makino, S. Mutagenic analysis of the coronavirus intergenic consensus sequence. J. Virol. 1992; 66: 6330–6337.PubMedGoogle Scholar
  38. 38.
    Kapke, P. A., Tung, F. Y. T., Hogue, B. G., Brian, D. A., Woods, R. D., Wesley, R. The amino-terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology 1988; 165: 367–376.PubMedCrossRefGoogle Scholar
  39. 39.
    Kim, Y. N., Lai, M. M. C., Makino, S. Generation and selection of coronavirus defective interfering RNA with large open reading frame by RNA recombination and possible editing. Virology 1993; 194: 244–253.PubMedCrossRefGoogle Scholar
  40. 40.
    Koetzner, C. A., Parker, M. M., Ricard, C. S., Sturman, L. S., Masters, P. S. Repair and mutagenesis of the genome of a deletion mutant of the coronavirus mouse hepatitis virus by targeted RNA recombination. J.Virol. 1992; 66: 1841–1848.PubMedGoogle Scholar
  41. 41.
    Kolb, A., Grosse, B., Siddell, S. G. Immunological prevention of coronavirus infection. Resistance to viral infection. 1994. Fundación Juan March, Madrid, Spain.Google Scholar
  42. 42.
    Konings, D. A. M., Bredenbeek, P. J., Noten, J. F. H., Hogeweg, P., Spaan, W. J. M. Differential premature termination of transcription as a proposed mechanism for the regulation of coronavirus gene expression. Nuc. Ac. Res. 1988; 16: 10849–10860.CrossRefGoogle Scholar
  43. 43.
    Koolen, M. J. M., Borst, M. A. J., Horzinek, M. C., Spaan, W. J. M. Immunogenic peptide comprising a mouse hepatitis virus A59 B-cell epitope and an influenza virus T-cell epitope protects against lethal infection. J. Virol. 1990; 64: 6270–6273.PubMedGoogle Scholar
  44. 44.
    Kubo, H., Taguchi, F. Expression of the S1 and S2 subunits of murine coronavirus JHMV spike protein by vaccinia virus transient expression system. J. Gen. Virol. 1993; 74: 2372–2383.Google Scholar
  45. 45.
    Kyuwa, S., Stohlman, S. Advances in the study of MHV infection of mice. Adv. Exp. Med. Biol. 1990; 276: 555–556.PubMedCrossRefGoogle Scholar
  46. 46.
    Lai, M. M. C. Coronavirus -organization, replication and expression of genome. Ann. Rev. Microbiol. 1990; 44: 303–333.CrossRefGoogle Scholar
  47. 47.
    Lapps, W., Hogue, B. G., Brian, D. A. Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology 1987; 157: 47–57.PubMedCrossRefGoogle Scholar
  48. 48.
    Laude, H., Chapsal, J. M., Gelfi, J., Labiau, S., Grosclaude, J. Antigenic structure of transmissible gastroenteritis virus. I Properties of monoclonal antibodies directed against virion proteins. J. Gen. Virol. 1986; 67: 119–130.Google Scholar
  49. 49.
    Laude, H., Gelfi, J., Lavenant, L., Charley, B. Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by the coronavirus transmissible gastroenteritis virus. J. Virol. 1992; 66: 743–749.PubMedGoogle Scholar
  50. 50.
    Laude, H., Rasschaert, D., Huet, J. C. Sequence and N-terminal processing of the transmembrane protein El of the coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987; 68: 1687–1693.PubMedCrossRefGoogle Scholar
  51. 51.
    Laviada, M. D., Videgain, S. R, Moreno, L., Alonso, F., Enjuanes, L., Escribano, J. M. Expression of swine transmissible gastroenteritis virus envelope antigens on the surface of infected cells: epitopes externally exposed. Vir. Res. 1990; 16: 247–254.CrossRefGoogle Scholar
  52. 52.
    Lecomte, J., Cainelli-Cebera, V, Mercier, G., Mansour, S., Talbot, R, Lussier, G., Oth, D. Protection from mouse hepatitis virus type 3-induced acute disease by an anti-nucleoprotein monoclonal antibody. Arch. Virol. 1987; 97: 123–130.PubMedCrossRefGoogle Scholar
  53. 53.
    Lenstra, J. A., Erkens, J. H. R, Langeveld, J. G. A., Posthumus, W. P. A., Meloen, R. H., Gebauer, F., Correa, I., Enjuanes, L., Stanley, K. K. Isolation of sequences from a random-sequence expression library that mimic viral epitopes. J. Immunol. Meth. 1992; 152: 149–157.CrossRefGoogle Scholar
  54. 54.
    Lenstra, J. A., Kusters, J. G., Koch, G., van der Zeijst, B. A. M. Antigenicity of the peplomer protein of infectious bronchitis virus. Molec. Immunol. 1989; 26: 7–15.CrossRefGoogle Scholar
  55. 55.
    Liao, C.-L., Lai, M. M. C. The requirement of 5’-end genomic sequence as an upstream cis-acting element for coronavirus subgenomic mRNA transcription. J. Virol. 1994; In Press.Google Scholar
  56. 56.
    Liljeström, P., Garoff, H. A new generation of animal cell expression vectors based on the Semliki forest virus replicon. Biotechnology 1991; 9: 1356–1361.PubMedCrossRefGoogle Scholar
  57. 57.
    Lin, Y. J., Lai, M. M. C. Deletion mapping of a mouse hepatitis virus defective interfering RNA reveals the requirement of an internal and discontiguous sequence for replication. J. Virol. 1993; 67: 6110–6118.PubMedGoogle Scholar
  58. 58.
    Luytjes, W., Geerts, D., Posthumus, W., Meloen, R., Spaan, W. J. M. Amino acid sequence of a conserved neutralizing epitope of murine coronaviruses. J. Virol. 1989; 63: 1408–1415.PubMedGoogle Scholar
  59. 59.
    Makino, S., Fleming, J. O., Keck, J. G., Stohlman, S. T., Lai, M. M. C. RNA recombination of coronaviruses: localization of neutralizing epitopes and neuropathogenic determinants on the carboxyl terminus of peplomers. Proc. Natl. Acad. Sci. 1987; 84: 6567–6571.PubMedCrossRefGoogle Scholar
  60. 60.
    Makino, S., Joo, M., Makino, J. K. A System for study of coronavirus messenger RNA synthesis -a regulated, expressed subgenomic defective interfering RNA results from intergenic site insertion. J. Virol. 1991;65:6031–6041.PubMedGoogle Scholar
  61. 61.
    Makino, S., Yokomori, K., Lai, M. M. C. Analysis of efficiently packaged defective interfering RNAs of murine coronavirus -localization of a possible RNA-packaging signal. J. Virol. 1990; 64: 6045–6053.PubMedGoogle Scholar
  62. 62.
    Mengeling, W. L. Porcine coronaviruses: co-infection of cell cultures with transmissible gastroenteritis virus and hemagglutinating encephalomyelitis. Am. J. Vet. Res. 1973; 34: 779–783.PubMedGoogle Scholar
  63. 63.
    Mizutani, T., Hayashi, M., Maeda, A., Sasaki, N., Yamashsita, T., Kasai, N., Namioka, S. Inhibition of mouse hepatitis virus multiplication by antisense oligonucleotide, antisense RNA, sense RNA, and ribozyme. Adv. Exp. Med. Biol. 1994; 276: 129–135.CrossRefGoogle Scholar
  64. 64.
    Nakanaga, K., Yamanouchi, K., Fujiwara, K. Protective effect of monoclonal antibodies on lethal mouse hepatitis virus infection in mice. J. Virol. 1986; 59: 168–171.PubMedGoogle Scholar
  65. 65.
    Niesters, H. G. M., Lenstra, J. A., Spaan, W. J. M., Zijderveld, A. J., Bleumink-Pluym, N. M. C, van der Zeijst, B. A. M. The peplomer protein sequence of the M41 strain of coronavirus IBV and its comparison with Beaudette strains. Vir. Res. 1986; 5: 253–263.CrossRefGoogle Scholar
  66. 66.
    Olsen, C. W. A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet. Microbiol. 1993; 36: 1–37.PubMedCrossRefGoogle Scholar
  67. 67.
    Parker, M. M., Masters, P. S. Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology 1990; 179: 463–468.PubMedCrossRefGoogle Scholar
  68. 68.
    Posthumus, W. P. A., Lenstra, J. A., van Nieuwstadt, A. P., Schaaper, W. M. M., van der Zeijst, B. A. M., Meloen, R. H. Immunogenicity of peptides simulating a neutralizing epitope of transmissible gastroenteritis virus. Virology 1991; 182: 371–375.PubMedCrossRefGoogle Scholar
  69. 69.
    Posthumus, W. P. A., Meloen, R. H., Enjuanes, L., Correa, I., van Nieuwestadt, A., Koch, G. Linear neutralizing epitopes on the peplomer protein of coronaviruses. Adv. Exp. Med. Biol. 1990; 276: 181–188.PubMedCrossRefGoogle Scholar
  70. 70.
    Pulford, D. J., Britton, P. Expression and cellular localisation of porcine transmissible gastroenteritis virus N and M proteins by recombinant vaccinia viruses. Vir. Res. 1990; 18: 203–218.CrossRefGoogle Scholar
  71. 71.
    Reddy, P. S., Nagy, E., Derbishire, J. B. Restriction endonuclease analysis and molecular cloning of porcine adenovirus type 3. Intervirology 1993; 36: 161–168.PubMedGoogle Scholar
  72. 72.
    Risco, C., Antón, I. M., Suñé, C., Pedregosa, A. M., Martín-Alonso, J. M., Parra, F., Carrascosa, J. L., Enjuanes, L. The membrane protein of transmissible gastroenteritis coronavirus exposes the carboxy-terminal region on the external surface of the virion. 1994. Submitted.Google Scholar
  73. 73.
    Routledge, E., Stauber, R., Pfleiderer, M., Siddell, S. G. Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies. J. Virol. 1991; 65: 254–262.PubMedGoogle Scholar
  74. 74.
    Saif, L. J., Wesley, R. D. Transmissible gastroenteritis. In: Leman A. D., Straw, B., Mengeling, W. L., D’ Allaire, S., Taylor, D. J., (eds), Diseases of swine. Iowa State University Press, Ames, Iowa 1992, pp. 362–386Google Scholar
  75. 75.
    Sánchez, C. M., Jiménez, G., Laviada, M. D., Correa, I., Suñé, C., Bullido, M. J., Gebauer, F., Smerdou, C., Callebaut, P., Escribano, J. M., Enjuanes, L. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology 1990; 174: 410–417.PubMedCrossRefGoogle Scholar
  76. 76.
    Sánchez, C. M., Torres, J. M., Suñé, C., Smerdou, C., Graham, F. L., Enjuanes, L. Transmissible gastroenteritis coronavirus spike protein expressed by adenovirus vectors elicited virus neutralizing antibodies in hamsters. 1994. Submitted.Google Scholar
  77. 77.
    Sasaki, N., Hayashi, M., Aoyama, S., Yamashita, T., Miyoshi, I., Kasai, N., Namioka, S. Transgenic mice with antisense RNA against the nucleocapsid protein mRNA of mouse hepatitis virus. J. Vet. Med. Sci. 1993; 55:549–554.PubMedCrossRefGoogle Scholar
  78. 78.
    Scott, F. W., Corapi, W. V., Olsen, C. W. Evaluation of the safety and efficacy of Primucell-FIPR vaccine. Feline Health Topics 1992; 7: 6–8.Google Scholar
  79. 79.
    Sethna, P. B., Hung, S.-L., Brian, D. A. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons. Proc. Natl. Acad. Sci. USA 1989; 86: 5626–5630.PubMedCrossRefGoogle Scholar
  80. 80.
    Smerdou, C., Antón, I. M., Plana, J., Curtiss, R., Enjuanes, L. Expression of a continuos epitope from Transmissible gastroenteritis coronavirus S protein fused to E. coli heat-labile toxin B subunit in attenuated Salmonella for oral immunization. 1994. Submitted.Google Scholar
  81. 81.
    Smith-Kline, B. Universal coronavirus vaccine; spike protein cloning and expression for use as a recombinant vaccine. Vaccine 1994; 12: 671.Google Scholar
  82. 82.
    Spaan, W., Cavanagh, D., Horzinek, M. C. Coronaviruses: structure and genome expression. J. Gen. Virol. 1988;69:2939–2952.PubMedCrossRefGoogle Scholar
  83. 83.
    Spaan, W., Cavanagh, D., Horzinek, M. C. Coronaviruses. In: van Regenmortel M. H. V., Neurath, A. R., (eds.), Immunochemistry of viruses II. The basis for serodiagnosis and vaccines. Elsevier, 1990, pp. 359–379Google Scholar
  84. 84.
    Stohlman, S. A., Bergmann, C., Cua, D., Wege, H. Location of antibody epitopes within the mouse hepatitis virus nucleocapsid protein. Virology 1994; 202: 146–153.PubMedCrossRefGoogle Scholar
  85. 85.
    Stohlman, S. A., Kyuwa, S., Cohen, M., Bergmann, C, Polo, J. M., Yeh, J., Anthony, R., Keck, J. G. Mouse hepatitis virus nucleocapsid protein-specific cytotoxic T lymphocytes are Ld restricted and specific for the carboxy terminus. Virology 1992; 189: 217–224.PubMedCrossRefGoogle Scholar
  86. 86.
    Sturman, L., Holmes, K., V. The novel proteins of coronaviruses. Trends Biochem. Sci. 1985; 10: 17–20.CrossRefGoogle Scholar
  87. 87.
    Talbot, P. J., Dionne, G., Lacroix, M. Vaccination against lethal coronavirus-induced encephalitis with a synthetic decapeptide homologous to a domain in the predicted peplomer stalk. J. Virol. 1988; 62: 3032–3036.PubMedGoogle Scholar
  88. 88.
    Talbot, P. J., Salmi, A. A., Knobler, R. L., Buchmeier, M. J. Topographical mapping of epitopes on the glycoprotein of murine hepatitis virus-4 (Strain JHM): correlation with biological activities. Virology 1984; 132:250–260.PubMedCrossRefGoogle Scholar
  89. 89.
    To, L. T., Bernard, S., Lantier, I. Fixed-cell immunoperoxidase technique for the study of surface antigens induced by the coronavirus of transmissible gastroenteritis (TGEV). Vet. Microbiol. 1991; 29: 361–368.PubMedCrossRefGoogle Scholar
  90. 90.
    Tooze, S. A., Stanley, K. K. Identification of two epitopes in the carboxyterminal 15 amino acids of the E1 glycoprotein of mouse hepatitis virus A59 by using hybrid proteins. J. Virol. 1986; 60: 928–934.PubMedGoogle Scholar
  91. 91.
    Torres, J. M., Escribano, J. A. M., Enjuanes, L. Induction of lactogenic immunity to transmissible gastroenteritis coronavirus with recombinant Adenovirus 5 expressing TGEV spike protein. 1995. Submitted.Google Scholar
  92. 92.
    Tung, F. Y. T., Abraham, S., Sethna, M., Hung, S. L., Sethna, P., Hogue, B. G., Brian, D. A. The 9-kDa hydrophobic protein encoded at the 3’ end of the porcine transmissible gastroenteritis coronavirus genome is membrane-associated. Virology 1992; 186: 676–683.PubMedCrossRefGoogle Scholar
  93. 93.
    van der Most, R. G., Bredenbeek, P. J. A domain at the 3’ end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs. J. Virol. 1991; 65: 3219–3226.PubMedGoogle Scholar
  94. 94.
    van der Most, R. G., Bredenbeek, P. J., Spaan, W. J. M. A domain at the 3’ end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs. J. Virol. 1991; 65: 3219–3226.PubMedGoogle Scholar
  95. 95.
    van der Most, R. G., De Groot, R. J., Spaan, W. J. M. Subgenomic RNA synthesis directed by a synthetic defective interfering RNA of mouse Hepatitis virus: a study of Coronavirus transcription initiation. J. Virol. 1994; 68: 3656–3666.PubMedGoogle Scholar
  96. 96.
    van der Most, R. G., Heijnen, L., Spaan, W. J. M., Degroot, R. J. Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic coreplicating RNAs. Nuc. Ac. Res. 1992; 20: 3375–3381.CrossRefGoogle Scholar
  97. 97.
    Vennema, H., De Groot, R. J., Harbour, D. A., Horzinek, M. C., Spaan, W. J. M. Primary structure of the membrane and nucleocapsid protein genes of Feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens. Virology 1991; 181: 327–335.PubMedCrossRefGoogle Scholar
  98. 98.
    Vennema, H., DeGroot, R. J., Harbour, D. A., Dalderup, M., Gruffydd-Jones, T., Horzinek, M. C., Spaan, W. J. M. Early death after feline infectious peritonitis challenge due to recombinant vaccinia virus immunization. J. Virol. 1990; 64: 1407–1409.PubMedGoogle Scholar
  99. 99.
    Wang, F. I., Fleming, J. O., Lai, M. M. C. Sequence analysis of the spike protein gene of murine coronavirus variants: Study of genetic sites affecting neuropathogenicity. Virology 1992; 186: 742–749.PubMedCrossRefGoogle Scholar
  100. 100.
    Wege, H., Schliephake, A., Körner, H., Flory, E., Wege, H. Coronavirus induced encephalomyelitis: an immunodominant CD4+-T cell site on the nucleocapsid protein contributes to protection. Adv. Exp. Med. Biol. 1994;342:413–418.CrossRefGoogle Scholar
  101. 101.
    Welch, S. K. W., Saif, L. J. Monoclonal antibodies to a virulent strain of transmissible gastroenteritis virus: comparison of reactivity with virulent and attenuated virus. Arch. Virol. 1988; 101: 221–235.PubMedCrossRefGoogle Scholar
  102. 102.
    Wesseling, J. G., Godeke, G. J. Mouse hepatitis virus spike and nucleocapsid proteins expressed by adenovirus vector protect mice against a lethal infection. J. Gen. Virol. 1993; 74: 2061–2069.PubMedCrossRefGoogle Scholar
  103. 103.
    Williamson, J. S. P., Stohlman, S. A. Effective clearance of mouse hepatitis virus from the central nervous system requires both CD4+ and CD8+ T cells. J. Virol. 1990; 64: 4589–4592.PubMedGoogle Scholar
  104. 104.
    Woods, R. D., Wesley, R. D., Kapke, P. A. Complement-dependent neutralization of transmissible gastroenteritis virus by monoclonal antibodies. Adv. Exp. Med. Biol. 1987; 218: 493–500.PubMedCrossRefGoogle Scholar
  105. 105.
    Yoden, S., Kikuchi, T., Siddell, S. G., Taguchi, F. Expression of the peplomer glycoprotein of murine coronavirus JHM using a baculovirus vector. Virology 1989; 173: 615–623.PubMedCrossRefGoogle Scholar
  106. 106.
    Yoo, D., Parker, M. D., Babiuk, L. A. The S2 subunit of the spike glycoprotein of bovine coronavirus mediates membrane fusion in insect cells. Virology 1991; 180: 395–399.PubMedCrossRefGoogle Scholar
  107. 107.
    Yoo, D., Parker, M. D., Song, J., Graham, F. L., Deregt, D., Babiuk, L. A. Structural analysis of the conformational domains involved in neutralization of Bovine Coronavirus using deletion mutants of the spike glycoprotein S1 subunit expressed by recombinant baculoviruses. Virology 1991; 183: 91 – 98.PubMedCrossRefGoogle Scholar
  108. 108.
    Yoo, D. W., Graham, F. L., Prevec, L., Parker, M. D., Benko, M., Zamb, T., Babiuk, L. A. Synthesis and processing of the haemagglutinin-esterase glycoprotein of bovine coronavirus encoded in the E3 region of adenovirus. J. Gen. Virol. 1992; 73: 2591–2600.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Luis Enjuanes
    • 1
  • Cristian Smerdou
    • 1
  • Joaquín Castilla
    • 1
  • Inés M. Antón
    • 1
  • Juan M. Torres
    • 1
  • Isabel Sola
    • 1
  • José Golvano
    • 2
  • Jose M. Sánchez
    • 1
  • Belén Pintado
    • 1
  1. 1.Department of Molecular and Cellular BiologyCentro Nacional de Biotecnología, CSIC, Campus Universidad AutónomaCantoblanco, MadridSpain
  2. 2.Facultad de MedicinaUniversidad de NavarraPamplonaSpain

Personalised recommendations