In Vitro Interaction of Coronaviruses with Primate and Human Brain Microvascular Endothelial Cells

  • G. F. Cabirac
  • R. S. Murray
  • L. B. McLaughlin
  • D. M. Skolnick
  • B. Hogue
  • K. Dorovini-Zis
  • P. J. Didier
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 380)


Primary human and primate brain microvascular endothelial cells were tested for permissiveness to coronaviruses JHM and 229E. While sub-genomic viral RNAs could be detected up to 72 hours post-infection, primate cells were abortively infected and neither virus caused cytopathology. Human cells were non-permissive for JHM but permissive for 229E replication; peak production of progeny 229E and observable cytopathic effects occurred approximately 22 and 32 hour post-infection, respectively. Using the criterion of cytopathology induction in infected endothelial cells, 229E was compared to other human RNA and DNA viruses. In addition, virus induced modulation of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and HLA I was monitored by immunostaining of infected cells.


WI38 Cell Brain Microvascular Endothelial Cell Mono Layer Human Brain Microvascular Endothelial Cell Endothelial Cell Growth Supplement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sorensen, O., Percy, D. and Dales, S. In vivo and in vitro models of demyelinating diseases. III. JHM virus infection of rats. Arch. Neurol. 1980; 37:478–484.PubMedCrossRefGoogle Scholar
  2. 2.
    Stohlman, S.A. and Weiner, L.P. Chronic central nervous system demyelination in mice after JHM virus infection. Neurol. 1981; 31:38–44.CrossRefGoogle Scholar
  3. 3.
    Knobler, R., Haspel, M., and Oldstone, M. Mouse hepatitis virus type-4 (JHM strain) -Induced fatal central nervous system disease. I. Genetic control and the murine neuron as the susceptible site of disease. J.Exp.Med. 1981; 153:832.PubMedCrossRefGoogle Scholar
  4. 4.
    Dubois-Dalcq, M.E., Doller, E.W., Haspel, M.U., and Holmes,K. Cell tropism and expression of mouse hepatitis viruses (MHV) in mouse spinal cord cultures. Virol. 1982; 119:317–331.CrossRefGoogle Scholar
  5. 5.
    Lavi, E., Gilden, D.H., Highkin, M.K. and Weiss, S. Persistence of mouse hepatitis virus A59 RNA in a slow virus demyelinating infection in mice as detected by insitu hybridization. J. Virol. 1984; 51:563–566.PubMedGoogle Scholar
  6. 6.
    Buchmeier, M., Lewicki, H., Talbot, P., and Knobler, R. Murine hepatitis virus-4 (strain JHM) induced neurologic disease is modulated in vivo by monoclonal antibody. Virol. 1984; 132:261.CrossRefGoogle Scholar
  7. 7.
    Perlman, S., Jacobsen, G. and Afifi, A. Spread of a neurotropic murine coronavirus into the CNS via the trigeminal and olfactory nerves. Virol. 1989; 170:556CrossRefGoogle Scholar
  8. 8.
    Johnson R.T. Viral Infections of the Nervous System. New York: Raven Press; 1982.Google Scholar
  9. 9.
    Mims C.A. The Pathogeneis of Infectious Diseases. 2nd ed. London: Academic Press; 1982.Google Scholar
  10. 10.
    Johnson R.T. and Mims C.A. Pathogenesis of viral infections of the nervous system. N.Engl.J.Med. 1968; 278:23–30;87–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Burks, J.S., DeVald, B.L., Jankovsky, L.D., and Gerdes, J.C. Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science 1980; 209:933–934.PubMedCrossRefGoogle Scholar
  12. 12.
    Murray R.S., Brown, B., Brian, D., and Cabirac, G.F. Detection of coronavirus RNA and antigen in multiple sclerosis brain. Ann.Neurol. 1992; 31:525–533.PubMedCrossRefGoogle Scholar
  13. 13.
    Stewart, J.N., Mounir, S., and Talbot, P.J. Human coronavirus gene expression in the brain of multiple sclerosis patients. Virol. 1992; 191:502–505.CrossRefGoogle Scholar
  14. 14.
    Cabirac, G.F., Soike, K.F., Hoel, K., Butunoi, C., Cai, G.-Y., Johnson, S., and Murray, R.S. Entry of coronavirus into primate CNS following peripheral infection. Micro. Path. 1994;Google Scholar
  15. 15.
    Hogue, B.G. and Brian, D.A. Structural proteins of human respiratory coronavirus OC43. Virus Res. 1986;5:131–144.PubMedCrossRefGoogle Scholar
  16. 16.
    Dorovini-Zis K., Prameya R., and Bowman P.D. Culture and characterization of microvascular endothelial cells derived from human brain. Lab.Invest. 1991; 64:425–436.PubMedGoogle Scholar
  17. 17.
    Wong D. and Dorovini-Zis K. Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. J.Neuroimmunol. 1992;39:11–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Huynh, H.K. and Dorovini-Zis K. Effects of interferon-gamma on primary cultures of human brain microvessel endothelial cells. Amer.J. Path. 1993; 142:1265–1278.PubMedGoogle Scholar
  19. 19.
    Chomczynski, P. and Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal.Biochem. 1987; 162:156–159.PubMedCrossRefGoogle Scholar
  20. 20.
    Cooper, G., Borish, L., Mascali, J., Watson, C., Kirkegaard, K., Morrissey, L., and Tedesco, J.L. The photocatalytic production of organic-free water for molecular biological and pharmaceutical applications. J.Biotech. 1994;33:123–133.CrossRefGoogle Scholar
  21. 21.
    Cabirac, G.F., Mulloy, J.J., Strayer, D.S., Sell, S., and Leibowitz, J.L. (1986). Transcriptional mapping of early RNA from regions of the Shope fibroma and malignant rabbit fibroma virus genomes. Virol. 1986;153, 53–69.CrossRefGoogle Scholar
  22. 22.
    Budzilowicz, C.J., Wilczynski, S.P., and Weiss, S.R. Three intergenic regions of coronavirus mouse hepatitis virus strain A59 genome RNA contain a common nucleotide sequence that is homologous to the 3’ end of the viral mRNA leader sequence. Virol. 1985; 53:834–840.Google Scholar
  23. 23.
    Schreiber, S.S., Kamahora, T., and Lai, M.M.C. Sequence analysis of the nucleocapsid protein gene of human coronavirus 229E. Virol. 1989;169:141–151Google Scholar
  24. 24.
    Feinberg, A.P., and Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal.Biochem. 1983; 132:6–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Gumkowski, F., Kaminska, G., Kaminski, M, Morrissey, L.W., and Auerbach, R. Heterogeneity of mouse vascular endothelium. In vitro studies of lymphatic, large blood vessel and microvascular endothelial cells. Blood Vessels 1987; 24:11–23.PubMedGoogle Scholar
  26. 26.
    Turner, R.R., Beckstead, J.H., Warnke, R.A., and Wood, G.S.. Endothelial cell phenotypic diversity. In situ demonstration of immunologic and enzymatic heterogeneity that correlates with specific morphologic subtypes. Amer.J.Clin.Path. 1987; 87:569–576.Google Scholar
  27. 27.
    Belloni, P.N. and Nicolson, G.L. Differential expression ofcell surface glycoproteins on various organ derived microvascular endothelia and endothelial cell cultures. J.Cell.Physiol. 1989; 136:398–410.CrossRefGoogle Scholar
  28. 28.
    Lodge, P.A., Haisch, C.E., Huber, S.A., Martin, B., and Craighead, J.C. Biological differences in endothelial cells depending upon organ derivation. Transplant.Proc. 1991; 23:216–218.PubMedGoogle Scholar
  29. 29.
    Huber, S.A., Haisch, C., and Lodge, P.A. Functional diversity in vascular endothelial cells: role in coxsackievirus tropism. J.Virol. 1990; 64:4516–4522.PubMedGoogle Scholar
  30. 30.
    Goerdt, S. and Sorg, C. Endothelial heterogeneity and the acquired immunodeficiency syndrome: a paradigm for the pathogenesis of vascular disorders. Clin.Investig. 1992; 70:89–98PubMedCrossRefGoogle Scholar
  31. 31.
    Lafon, M.E., Gendrault, J.L., Royer, C., Jaeck, D., Kirn, A., and Steffan, A.M. Human endothelial cells isolated from the hepatic sinusoids and the umbilical vein display a different permissiveness for HIV1. Res. Virol. 1993; 144:99–104.PubMedCrossRefGoogle Scholar
  32. 32.
    Joseph, J., Kim, R., Siebert, K., Lublin, F.D., Offenbach, C., and Knobler, R.L. Organ specific endothelial cell heterogeneity influences differential replication and cytopathogenicity of MHV-3 and MHV-4. Implications in viral tropism. In: Adv.Expt.Med.Biol., (eds) Talbot P. and Levy G. 1995. Plenum Press, NY. p. 43.Google Scholar
  33. 33.
    Abbott, N.J., Revest, P.A., and Romero, LA. Astrocyte-endothelial interaction: physiology and pathology. Neuropath.App.Neurobiol. 1992; 18:424–433.CrossRefGoogle Scholar
  34. 34.
    In: Principles and Practice of Infectious Diseases (3rd Ed.). (eds) Mandell, G.L., Douglas, R.G., and Bennett, J.E. 1990. Churchill Livingstone Inc.Google Scholar
  35. 35.
    Hofmann, M.A., Sethna, P.B., and Brian, D.A. Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. J.Virol. 1990; 64:4108–4114.PubMedGoogle Scholar
  36. 36.
    Sethna, P.B., Hofmann, M.A., and Brian, D.A. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J.Virol. 1991; 65:320–325.PubMedGoogle Scholar
  37. 37.
    Cavanagh, D., Shaw, K., and Xiaoyan, Z. Analysis of messenger RNA within virions of IBV. In: Adv.Expt.Med.Biol., Vol. 342 (eds) Laude H. and Vautherot J-F. 1993. Plenum Press, NYGoogle Scholar
  38. 38.
    Span, A.H., Mullers, W., Miltenburg, A.M., and Bruggeman CA Cytomegalovirus induced PMN adherence in relation to an ELAM-1 antigen present on infected endothelial cell monolayers. Immunol. 1991; 72:355–360.Google Scholar
  39. 39.
    Joseph, J., Knobler, R.L., Lublin, F.D., and Burns, F.R. Regulation of the expression of intercellular adhesion molecule-1 (ICAM-1) and the putative adhesion molecule basigin on murine cerebral endothelial cells by MHV-4 (JHM). In: Adv.Expt.Med.Biol., Vol. 342 (eds) Laude H. and Vautherot J-F. 1993. Plenum Press, NY.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • G. F. Cabirac
    • 1
    • 2
    • 3
  • R. S. Murray
    • 2
    • 4
  • L. B. McLaughlin
    • 1
  • D. M. Skolnick
    • 1
  • B. Hogue
    • 5
  • K. Dorovini-Zis
    • 6
  • P. J. Didier
    • 7
  1. 1.Rocky Mountain Multiple Sclerosis CenterUSA
  2. 2.Colorado Neurological InstituteSwedish Medical CenterEnglewoodUSA
  3. 3.Department of Biochemistry, Biophysics and GeneticsUniversity of Colorado Health Sciences CenterDenverUSA
  4. 4.National Jewish Center for Immunology and Respiratory MedicineUSA
  5. 5.Department of Microbiology and Immunology BaylorCollege of MedicineHoustonUSA
  6. 6.Department of PathologyUniversity of British ColumbiaVancouverCanada
  7. 7.Department of PathologyTulane Regional Primate Research CenterCovingtonUSA

Personalised recommendations