Advertisement

The Role of Chemokines in the Recruitment of Leukocytes During Lung Inflammation

  • Robert M. Strieter
  • John A. Belperio
  • David Kelley
  • Ammar Sakkour
  • Michael P. Keane
Chapter
  • 87 Downloads
Part of the Molecular and Cellular Biology of Critical Care Medicine book series (MCCM, volume 1)

Abstract

The recruitment of specific leukocyte subpopulations in response to lung injury is a fundamental mechanism of acute pulmonary inflammation. The elicitation of leukocytes is dependent upon a complex series of events, including reduced leukocyte deformability, endothelial cell activation and expression of endothelial cell-derived leukocyte adhesion molecules, leukocyte-endothelial cell adhesion, leukocyte activation and expression of leukocyte-derived adhesion molecules, leukocyte transendothelial migration, and leukocyte migration beyond the endothelial barrier along established chemotactic and haptotactic gradients. While the events of leukocyte extravasation may appear intuitive, it has taken over 150 years of research to elucidate the molecular and cellular steps involved in the process of leukocyte migration.

Keywords

Lung Injury Acute Lung Injury Chemokine Receptor Cryptococcus Neoformans Adult Respiratory Distress Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Waller, A. (1846) Microscopical observations on the perforation of the capillaries by the corpuscles of the blood, and on the origin of mucous and pus-globules. Philos Magazine 29, 397Google Scholar
  2. 2.
    Massart, J., and Bordet, C. (1890) Recherches sur l’irritabilite des leucocytes et sur l’intervention de cette irritabilite dans la nutrition des cellules et dans l’inflammation. J Med Chir Pharm Brux 90, 169Google Scholar
  3. 3.
    Boyden, S. (1962) The chemotactic effect of mixtures of antibody and antigens on polymorphonuclear leukocytes. J Exp Med 115, 453PubMedCrossRefGoogle Scholar
  4. 4.
    Zigmond, S.H., and Hirsch, J.G. (1973) Leukocyte locomotion and chemotaxis: New methods for evaluation and demonstration of cell-derived chemotactic factor. J Exp Med 137, 387PubMedCrossRefGoogle Scholar
  5. 5.
    Ward, P.A., and Newman, L.J. (1969) A neutrophil chemotactic factor from human C′5. J Immunol 102, 93–99PubMedGoogle Scholar
  6. 6.
    Shin, H.S., Snyderman, R., Friedman, E., Mellors, A., and Mayer, M.M. (1968) Chemotactic and anaphylatoxic fragment cleaved from the fifth component of guinea pig complement. Science 162, 361–363PubMedCrossRefGoogle Scholar
  7. 7.
    Becker, E.L., and Ward, P.A. (1969) Esterases of the polymorphonuclear leukocyte capable of hydrolyzing acetyl DL-phenyl-alanine beta-naphthyl ester. Relationship to the activatable esterase of chemotaxis. J Exp Med 129, 569–574PubMedCrossRefGoogle Scholar
  8. 8.
    Lee, T.C., and Snyder, F. (1985) Function, metabolism and regulation of platelet activating factor and related ether lipids. In Phospholipids and cellular regulation. J.F. Kuo, editor. Boca Raton: CRC Press Inc. Google Scholar
  9. 9.
    Ford-Hutchinson, A.W., Bray, M.A., Doig, M.V., Shipley, M.E., and Smith, M.J. (1980) Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286, 264–265PubMedCrossRefGoogle Scholar
  10. 10.
    Zlotnik, A., and Yoshie, O. (2000) Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127PubMedCrossRefGoogle Scholar
  11. 11.
    Strieter, R.M., Lukacs, N.W., Standiford, T.J. and Kunkel, S.L. (1993) Cytokines and lung inflammation. Thorax 48, 765–769PubMedCrossRefGoogle Scholar
  12. 12.
    Strieter, R.M., Koch, A.E., Antony, V.B., Fick, R.B., Standiford, T.J., and Kunkel, S.L. (1994) The immunopathology of chemotactic cytokines: The role of interleukin-8 and monocyte chemoattractant protein-1. J Lab Clin Med 123, 183–196PubMedGoogle Scholar
  13. 13.
    Strieter, R.M., and Kunkel, S.L. (1994) Acute lung injury: The role of cytokines in the elicitation of neutrophils. J Invest Med 42, 640–665Google Scholar
  14. 14.
    Strieter, R.M., and Kunkel, S.L. (1994) Acute lung injury: the role of cytokines in the elicitation of neutrophils J Invest Med 42, 640–51Google Scholar
  15. 15.
    Strieter, R.M., and Kunkel, S.L. (1997) Chemokines in the lung. In Lung: Scientific Foundations, 2nd edition. R. Crystal, J. West, E. Weibel, and P. Barnes, editors. New York: Raven Press Google Scholar
  16. 16.
    Strieter, R.M., Kunkel, S.L., Keane, M.P., and Standiford, T.J. (1999) Chemokines in lung injury: Thomas A. Neff Lecture. Chest 116, 103S–110SPubMedCrossRefGoogle Scholar
  17. 17.
    Luster, A.D. (1998) Chemokines-chemotactic cytokines that mediate inflammation. N Engl J Med 338, 436–445PubMedCrossRefGoogle Scholar
  18. 18.
    Rollins, B.J. (1997) Chemokines. Blood 90, 909–928PubMedGoogle Scholar
  19. 19.
    Locati, M., and Murphy, P.M. (1999) Chemokines and chemokine receptors: biology and clinical relevance in inflammation and AIDS. Annu Rev Med 50, 425–440PubMedCrossRefGoogle Scholar
  20. 20.
    Hebert, C.A., Vitangcol, R.V., and Baker J.B. (1991) Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J Biol Chem 266, 18989–18994PubMedGoogle Scholar
  21. 21.
    Hebert, C.A., and Baker, J.B. (1993) Interleukin-8: a review. Cancer Invest 11, 743–750PubMedCrossRefGoogle Scholar
  22. 22.
    Clark-Lewis, I., Dewald, B., Geiser, T., Moser, B., and Baggiolini, M. (1993) Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Proc Natl Acad Sci USA 90, 3574–3577PubMedCrossRefGoogle Scholar
  23. 23.
    Padrines, M., Wolf, M., Walz, A., and Baggiolini, M. (1994) Interleukin-8 processing by neutrophil elastase, cathepsin G, and proteinase-3. FEBS Lett 352, 231–235PubMedCrossRefGoogle Scholar
  24. 24.
    Walz, A., Strieter, R.M., and Schnyder, S. (1993) Neutrophil-activating peptide ENA-78. Adv Exp Med Biol 351, 129–137PubMedCrossRefGoogle Scholar
  25. 25.
    Webb, L.M.C., Ehrengruber, M.U., Clark-Lewis, I., Baggiolini, M. and Rot, A. (1993) Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc Natl Acad Sci USA 90, 7158–7162PubMedCrossRefGoogle Scholar
  26. 26.
    De Meester, I., Korom, S., Van Damme, J. and Scharpe, S. (1999) CD26, let it cut or cut it down. Immunol Today 20, 367–375PubMedCrossRefGoogle Scholar
  27. 27.
    Proost, P., Struyf, S., Schols, D., Durinx, C., Wuyts, A., Lenaerts, J.P., DeClercq, E., De Meester, I., and Van Damme, J. (1998) Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1 alpha. FEBSLett 432, 73–76CrossRefGoogle Scholar
  28. 28.
    Proost, P., Menten, P., Struyf, S., Schutyser, E., DeMeester, I., and Van Damme, J. (2000) Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78beta into a most efficient monocyte attractant and CCR1 agonist. Blood 96, 1674–1680PubMedGoogle Scholar
  29. 29.
    Iacovelli, L., Sallese, M., Mariggio, S., and de Blasi. A. (1999) Regulation of G-protein-coupled receptor kinase subtypes by calcium sensor proteins. FASEB J 13, 1–8PubMedGoogle Scholar
  30. 30.
    Broxmeyer, H.E., and Kim, C.H. (1999) Regulation of hematopoiesis in a sea of chemokine family members with a plethora of redundant activities. Exp Hematol 27, 1113–1123PubMedCrossRefGoogle Scholar
  31. 31.
    Nibbs, R.J.B., Wylie, S.M., Pragnell, I.B., and Graham, G.J. (1997) Cloning and characterization of a novel murine beta chemokine receptor, D6. Comparison to three other related macrophage inflammatory protein- 1alpha receptors, CCR-1, CCR-3, and CCR-5. J Biol Chem 272, 12495–12504PubMedCrossRefGoogle Scholar
  32. 32.
    Premack, B.A., and Schall, T.J. (1996) Chemokine receptors: gateways to inflammation and infection. Nature Med 2, 1174–1178PubMedCrossRefGoogle Scholar
  33. 33.
    Imai, T., Chantry, D., Raport, C.J., Wood, C.L., Nishimura, M., Godiska, R., Yoshie, O., and Gray, P.W. (1998) Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4. J Biol Chem 273, 1764–1768PubMedCrossRefGoogle Scholar
  34. 34.
    Liao, F., Alderson, R., Su, J., Ullrich, S.J., Kreider, B.L., and Farber, J.M. (1997) STRL22 is a receptor for the CC chemokine MIP-3alpha. Biochem Biophys Res Commun 236, 212–217PubMedCrossRefGoogle Scholar
  35. 35.
    Liao, F., Alkhatib, G., Peden, K.W., Sharma, G., Berger, E.A., and Farber, J.M. (1997) STRL33, A novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1. J Exp Med 185, 2015–2023PubMedCrossRefGoogle Scholar
  36. 36.
    Sozzani, S., Luini, W., Borsatti, A., Polentarutti, N., Zhou, D., Piemonti, L., D’Amico, G., Power, C.A., Wells, T.N., Gobbi, M., Allavena, P., and Mantovani, A. (1997) Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J Immunol 159, 1993–2000PubMedGoogle Scholar
  37. 37.
    Dieu, M.C., Vanbervliet, B., Vicari, A., Bridon, J.M., Oldham, E., Ait-Yahia, S., Briere, F., Zlotnik, A., Lebecque, S., and Caux, C. (1998) Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 188, 373–386PubMedCrossRefGoogle Scholar
  38. 38.
    Saeki, H., Wu, M.T., Olasz, E., and Hwang, S.T. (2000) A migratory population of skin-derived dendritic cells expresses CXCR5, responds to B lymphocyte chemoattractant in vitro, and co-localizes to B cell zones in lymph nodes in vivo. Eur J Immunol 30, 2808–2814PubMedCrossRefGoogle Scholar
  39. 39.
    Cumberbatch, M., Dearman, R.J., Griffiths, C.E., and Kimber, I. (2000) Langerhans cell migration. Clin Exp Dermatol 25, 413–418PubMedCrossRefGoogle Scholar
  40. 40.
    Dieu-Nosjean, M.C., Massacrier, C., Homey, B., Vanbervliet, B., Pin, J.J., Vicari, A., Lebecque, S., Dezutter-Dambuyant, C., Schmitt, D., Zlotnik, A., and Caux, C. (2000) Macrophage inflammatory protein 3alpha is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med 192, 705–718PubMedCrossRefGoogle Scholar
  41. 41.
    Sozzani, S., Allavena, P., Vecchi, A., and Mantovani, A. (2000) Chemokines and dendritic cell traffic. J Clin Immunol 20, 151–160PubMedCrossRefGoogle Scholar
  42. 42.
    Frevert, C.W., Huang, S., Danaee, H., Paulauskis, J.D., and Kobzik, L. (1995) Functional characterization of the rat chemokine KC and its importance in neutrophil recruitment in a rat model of pulmonary inflammation. J Immunol 154, 335–344PubMedGoogle Scholar
  43. 43.
    Boylan, A.M., Hebert, C.A., Sadick, M., Wong, W.L., Chuntharapai, A., Hoeffel, J.M., Hartiala, K.T., and Broaddus, V.C. (1994) Interleukin-8 is a major component of pleural liquid chemotactic activity in a rabbit model of endotoxin pleurisy. Am J Physiol 267, L137–144PubMedGoogle Scholar
  44. 44.
    Broaddus, V.C., Boylan, A.M., Hoeffel, J.M., Kim, K.J., Sadick, M., Chuntharapai, A., and Hebert, C.A. (1994) Neutralization of IL-8 inhibits neutrophil influx in a rabbit model of endotoxin-induced pleurisy. J Immunol 152, 2960–2967PubMedGoogle Scholar
  45. 45.
    Boutten, A., Dehoux, M.S., Seta, N., Ostinelli, J., Venembre, P., Crestani, B., Dombret, M.C., Durand, G., and Aubier, M. (1996) Compartmentalized IL-8 and elastase release within the human lung in unilateral pneumonia. Am J Respir Crit Care Med 153, 336–342PubMedGoogle Scholar
  46. 46.
    Rodriguez, J.L., Miller, C.G., DeForge, L.E., Kelty, L., Shanley, C.J., Bartlett, R.H., and Remick, D.G. (1992) Local production of interleukin-8 is associated with nosocomial pneumonia. J Trauma 33, 74–81PubMedCrossRefGoogle Scholar
  47. 47.
    Johnson, M.C., 2nd, Kajikawa, O., Goodman, R.B., Wong, V.A., Mongovin, S.M., Wong, W.B., Fox-Dewhurst, and R., Martin. T.R. (1996) Molecular expression of the alpha-chemokine rabbit GRO in Escherichia coli and characterization of its production by lung cells in vitro and in vivo. J Biol Chem 271, 10853–10858PubMedCrossRefGoogle Scholar
  48. 48.
    Greenberger, M.J., Strieter, R.M., Kunkel, S.L., Danforth, J.M., Laichalk, L.L., McGillicuddy, D.C., and Standiford, T.J. (1996) Neutralization of macrophage inflammatory protein-2 attenuates neutrophil recruitment and bacterial clearance in murine Klebsiella pneumonia. J Infect Dis 173, 159–165PubMedCrossRefGoogle Scholar
  49. 49.
    Standiford, T.J., Kunkel, S.L., Greenberger, M.J., Laichalk, L.L., and Strieter, R.M. (1996) Expression and regulation of chemokines in bacterial pneumonia. J Leukoc Biol 59, 24–28PubMedGoogle Scholar
  50. 50.
    Mehrad, B., and Standiford, T.J. (1999) Role of cytokines in pulmonary antimicrobial host defense. Immunol Res 20, 15–27PubMedCrossRefGoogle Scholar
  51. 51.
    Mehrad, B., Strieter, R.M., Moore, T.A., Tsai, W.C., Lira, S.A., and Standiford, T.J. (1999) CXC chemokine receptor-2 ligands are necessary components of neutrophil-mediated host defense in invasive pulmonary aspergillosis. J Immunol 163, 6086–6094PubMedGoogle Scholar
  52. 52.
    Tsai, W.C., Strieter, R.M., Mehrad, B., Newstead, M.W., Zeng, X., and Standiford, T.J. (2000) CXC chemokine receptor CXCR2 is essential for protective innate host response in murine Pseudomonas aeruginosa pneumonia. Infect Immunol 68, 4289–4296CrossRefGoogle Scholar
  53. 53.
    Tsai, W.C., Strieter, R.M., Wilkowski, J.M., Bucknell, K.A., Burdick, M.D., Lira, S.A., and Standiford, T.J. (1998) Lung-specific transgenic expression of KC enhances resistance to Klebsiella pneumoniae in mice. J Immunol 161, 2435–2440PubMedGoogle Scholar
  54. 54.
    Moore, T.A., Newstead, M.W., Strieter, R.M., Mehrad, B., Beaman, B.L., and Standiford, T.J. (2000) Bacterial clearance and survival are dependent on CXC chemokine receptor-2 ligands in a murine model of pulmonary Nocardia asteroides infection. J Immunol 164, 908–915PubMedGoogle Scholar
  55. 55.
    Laichalk, L.L., Bucknell, K.A., Huffnagle, G.B., Wilkowski, J.M., Moore, T.A., Romanelli, R.J., and Standiford. T.J. (1998) Intrapulmonary delivery of tumor necrosis factor agonist peptide augments host defense in murine gram-negative bacterial pneumonia. Infect Immun 66, 2822–2826PubMedGoogle Scholar
  56. 56.
    Jorens, P.G., VanDame, J., DeBecker, W., Bossaert, L., DeJongh, R.F., Herman, A.G., and Rampart, M. (1992) Interleukin-8 in the bronchoalveolar lavage fluid from patients with the adult respiratory distress syndrome (ARDS) and patients at risk for ARDS. Cytokine 4, 592–597PubMedCrossRefGoogle Scholar
  57. 57.
    Miller, E.J., Cohen, A.B., Nago, S., Griffith, D., Maunder, R.J., Martin, T.R., Weiner-Kronish, J.P., Sticherling, M., Christophers, E., and Matthay, M.A. (1992) Elevated levels of NAP-1/Interleukin-8 are present in the airspaces of patients with the adult respiratory distress syndrome and are associated with increased mortality. Am Rev Resp Dis 146, 427–432PubMedGoogle Scholar
  58. 58.
    Hack, C.E., Hart, M., Strack-vanSchijndel, R.J.M., Eerenberg, A.J.M., Nuijens, J.H., Thijs, L.G., and Aarden, L.A., (1992) Interleukin-8 in sepsis: relation to shock and inflammatory mediators. Infect Immun 60, 2835–2842PubMedGoogle Scholar
  59. 59.
    Chollet-Martin, S., Montravers, P., Gilbert, C., Elbim, C., Desmonts, J.M., Fagon, J.Y., and Gougerot-Pocidalo, M.A. (1993) High levels of interleukin-8 in the blood and alveolar spaces of patients with pneumonia and adult respiratory distress syndrome. Infect. Immun 61, 4553–4559PubMedGoogle Scholar
  60. 60.
    Donnelly, S.C., Strieter, R.M., Kunkel, S.L., Walz, A., Robertson, C.R., Carter, D.C., Grant, I.S., Pollok, A.J., and Haslett, C. (1993) Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet 341, 643–647PubMedCrossRefGoogle Scholar
  61. 61.
    Goodman, R.B., Strieter, R.M., Martin, D.P., Steinberg, K.P., Milberg, J.A., Maunder, R.J., Kunkel, S.L., Walz, A., Hudson, L.D., and Martin, T.R. (1996) Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med 154, 602–611PubMedGoogle Scholar
  62. 62.
    Metinko, A.P., Kunkel, S.L., Standiford, T.J., and Strieter, R.M. (1992) Anoxia-hyperoxia induces monocyte derived interleukin-8. J Clin Invest 90, 791–798PubMedCrossRefGoogle Scholar
  63. 63.
    Karakurum, M., Shreeniwas, R., Chen, J., Pinsky, D., Yan, S-D., Anderson, M., Sunouchi, K., Major, J., Hamilton, T., Kuwabara, K., Rot, A., Nowygrod, R., Stern, D. (1994) Hypoxia induction of interleukin-8 gene expression in human endothelial cells. J Clin Invest 93, 1564–1570PubMedCrossRefGoogle Scholar
  64. 64.
    Sekido, N., Mukaida, N., Harada, A., Nakanishi, I., Watanabe, Y., and Matsushima, K. (1993) Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature 365, 654–657PubMedCrossRefGoogle Scholar
  65. 65.
    Colletti, L.M., Remick, D.G., Burtch, G.D., Kunkel, S.L., Strieter, R.M., and Campbell, D.A., Jr. (1990) Role ot tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. J Clin Invest 85, 1936–1943PubMedCrossRefGoogle Scholar
  66. 66.
    Colletti, L.M., Kunkel, S.L., Walz, A., Burdick, M.D., Kunkel, R.G., Wilke, CA., and Strieter, R.M. (1995) Chemokine expression during hepatic ischemia/reperfusion-induced lung injury in the rat. The role of epithelial neutrophil activating protein. J Clin Invest 95, 134–141PubMedCrossRefGoogle Scholar
  67. 67.
    Dawson, T.C., Beck, M.A., Kuziel, W.A., Henderson, F., and Maeda, N. (2000) Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am J Pathol 156, 1951–1959PubMedCrossRefGoogle Scholar
  68. 68.
    Domachowske, J.B., Bonville, C.A., Gao, J.L., Murphy, P.M., Easton, A.J., and Rosenberg, H.F. (2000) The chemokine macrophage-inflammatory protein-1 alpha and its receptor CCR1 control pulmonary inflammation and antiviral host defense in paramyxovirus infection. J Immunol 165, 2677–2682PubMedGoogle Scholar
  69. 69.
    Mehrad, B., Moore, T.A., and Standiford, T.J. (2000) Macrophage inflammatory protein-1 alpha is a critical mediator of host defense against invasive pulmonary aspergillosis in neutropenic hosts. J Immunol 165, 962–968PubMedGoogle Scholar
  70. 70.
    Gao, J.L., Wynn, T.A., Chang, Y., Lee, E.J., Broxmeyer, H.E., Cooper, S., Tiffany, H., H. Westphal, H., Kwon-Chung, J. and Murphy, P.M. (1997) Impaired host defense, hematopoiesis, granulomatous inflammation and type 1-type 2 cytokine balance in mice lacking CC chemokine receptor 1. J Exp Med 185, 1959–1968PubMedCrossRefGoogle Scholar
  71. 71.
    Huffnagle, G.B., R.M. Strieter, T.J. Standiford, R.A. McDonald, M.D. Burdick, S.L. Kunkel, and G.B. Toews. (1995) The role of monocyte chemotactic protein-1 (MCP-1) in the recruitment of monocytes and CD4+ T cells during a pulmonary Cryptococcus neoformans infection. J Immunol 155, 4790–4797PubMedGoogle Scholar
  72. 72.
    Huffnagle, G.B., Strieter, R.M., McNeil, L.K., McDonald, R.A., Burdick, M.D., Kunkel, S.L., and Toews, G.B. (1997) Macrophage inflammatory protein-1 alpha (MIP-1 alpha) is required for the efferent phase of pulmonary cell-mediated immunity to a Cryptococcus neoformans infection. J Immunol 159, 318–327PubMedGoogle Scholar
  73. 73.
    Doerschuk, C.M., Mizgerd, J.P., Kubo, H., Qin, L., and Kumasaka, T. (1999) Adhesion molecules and cellular biomechanical changes in acute lung injury: Giles F. Filley Lecture. Chest. 116, 37S–43SPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Robert M. Strieter
    • 1
  • John A. Belperio
    • 1
  • David Kelley
    • 1
  • Ammar Sakkour
    • 1
  • Michael P. Keane
    • 1
  1. 1.Department of Medicine, Division of Pulmonary and Critical Care MedicineUniversity of California, Los Angeles (UCLA) School of MedicineLos AngelesUSA

Personalised recommendations