Pulmonary Collectins and Defensins

  • Ann Marie LeVine
Part of the Molecular and Cellular Biology of Critical Care Medicine book series (MCCM, volume 1)


Maintaining a sterile respiratory tract presents a unique host defense challenge determined, in part, by the large surface area of lung tissue that comes in direct contact with inhaled pathogens, particles, and gases. The constant exposure of the respiratory tract to microbial pathogens and associated inflammatory molecules is accommodated by a complex innate and acquired immune system that enhances clearance and killing of pathogens, while simultaneously attempting to minimize systemic acquired immune responses and local inflammation. Therefore, it is not surprising that a complex and multifaceted innate immune system has evolved to protect the lung against a large variety of pathogens. Pulmonary cells synthesize a repertoire of host defense molecules that bind, opsonize, or kill various pathogenic organisms. In addition to the contributions of lung parenchymal cells to host defense, phagocytes, leukocytes, mast cells, eosinophils, and lymphocytes also synthesize mediators of innate host defense. Lung parenchymal cells produce numerous small molecules and proteins with antimicrobial activities, including reactive oxygen and nitrogen species, lysozyme, lactoferrin, defensins, phospholipases, complement components, proteinase inhibitor, and secretory IgA.


Respiratory Syncytial Virus Alveolar Macrophage Idiopathic Pulmonary Fibrosis Surfactant Protein Innate Host Defense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wright, J.R. (1997) Immunomodulatory functions of surfactant Physiol Rev 77, 931–962PubMedGoogle Scholar
  2. 2.
    Sumiya, M., Super, M., Tabona, P., Levinsky, R.J., Arai, T., Turner, M.W., and Summerfield, J. A. (1991) Molecular basis of opsonic defect in immunodeficient children. Lancet 337, 1660–1670CrossRefGoogle Scholar
  3. 3.
    Katyal, S.L., Singh, G., and Locker, J. (1992) Characterization of a second human pulmonary surfactant-associated protein SP-A gene. Am J Respir Cell Mol Biol 6, 446–452PubMedGoogle Scholar
  4. 4.
    White, R.T., Damm, D., Miller, J., Spratt, K., Schilling, J., Hawgood, S., Benson, B., and Cordell, B. (1985) Isolation and characterization of the human pulmonary surfactant apoprotein gene. Nature 317, 361–363PubMedCrossRefGoogle Scholar
  5. 5.
    Weaver, T.E., and Whitsett, J.A. (1988) Structure and function of pulmonary surfactant proteins. Semin Perinatol 12, 213–220PubMedGoogle Scholar
  6. 6.
    Khoor, A., Gray, M.E., Hull, W.M., Whitsett, J.A., and Stahlman, M.T. (1993) Developmental expression of SP-A and SP-A mRNA in the proximal and distal respiratory epithelium in the human fetus and newborn. J Histochem Cytochem 41, 1311–1319PubMedCrossRefGoogle Scholar
  7. 7.
    Madsen, J., Kliem, A., Tornoe, I., Skjodt, K., Koch, C., and Holmskov, U., (2000) Localization of lung surfactant protein D on mucosal surfaces in human tissue. J Immunol 164, 5866–5870PubMedGoogle Scholar
  8. 8.
    Crouch, E., Rust, K., Veile, R., Donis-Keller, H., and Grosso, L. (1993) Genomic organization of human surfactant protein D (SP-D). J Biol Chem 268, 2976–2983PubMedGoogle Scholar
  9. 9.
    Hartshorn, K.L., Crouch, E., White, M.R., Colamussi, M.L., Kakkanatt, A., Tauber, B., Shepherd, V., and Sastry, K.N. (1998) Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria. Am J Physiol 274, L958–L969PubMedGoogle Scholar
  10. 10.
    Wright, J.R., and Youmans, D.C. (1993) Pulmonary surfactant protein-A stimulates Chemotaxis of alveolar macrophages. Am J Physiol 264, L338–L344PubMedGoogle Scholar
  11. 11.
    LeVine, A.M., Kurak, K.E., Wright, J.R., Watford, W.T., Bruno, M.D., Ross G.F., Whitsett, J.A., and Korfhagen, T.R. (1999) Surfactant protein-A binds Group B streptococcus, enhancing phagocytosis and clearance from lungs of surfactant protein-A-deficient mice. Am J Respir Cell Mol Biol 20, 279–286PubMedGoogle Scholar
  12. 12.
    Kabha, K., Schmegner J., Keisari, Y., Parolis, H., Schlepper-Schaefer, J., and Ofek, I. (1997) SP-A enhances phagocytosis of Klebsiella by interaction with capsular polysaccharides and alveolar macrophages. Am J Physiol 212, L344–L352Google Scholar
  13. 13.
    Mariencheck, W.I., Savov, J., Dong, Q., Tino, M.J., and Wright, J.R. (1999) Surfactant protein A enhances alveolar macrophage phagocytosis of a live, mucoid strain of P. aeruginosa. Am J Physiol 277, L777–L786PubMedGoogle Scholar
  14. 14.
    Harrod, K.S., Trapnell, B.C., Otake, K., Korfhagen, T.R., and Whitsett, J.A. (1999) SP-A enhances viral clearance and inhibits inflammation after pulmonary adenoviral infection. Am J Physiol 277, L580–L588PubMedGoogle Scholar
  15. 15.
    Weyer, C., Sabat, R., Wissel, H., Kruger, D.H., Stevens, P.A., and Prosch, S. (2000) Surfactant protein A binding to cytomegalovirus proteins enhances virus entry into rat lung cells. Am JRespir Cell Mol Biol 23, 71–78Google Scholar
  16. 16.
    Ghildyal, R., Hartley, C., Varrasso, A., Meanger, J., Voelker, D.R., Anders, E.M., and Mills, J. (1999) Surfactant protein A binds to the fusion glycoprotein of respiratory syncytial virus and neutralizes virion infectivity. J Infect Dis 180, 2009–2013PubMedCrossRefGoogle Scholar
  17. 17.
    Madan, T., Eggleton, P., Kishore, U., Strong, P., Aggrawal, S.S., Sarma, P.U., and Reid, K.B.M. (1997) Binding of pulmonary surfactant proteins A and D to Aspergillus fumigatus conidia enhances phagocytosis and killing by human neutrophils and alveolar macrophages. Infect Immun 65, 3171–3179PubMedGoogle Scholar
  18. 18.
    Crouch, E.C., Persson, A., Griffin, G.L., Chang, D., and Senior, R.M. (1995) Interactions of pulmonary surfactant protein D (SP-D) with human blood leukocytes. Am J Resp Cell Mol Biol 12, 410–415Google Scholar
  19. 19.
    LeVine, A.M., Whitsett, J.A., Gwozdz J.A., Richardson, T.R., Fisher, J.H., Burhans, M.S., and Korfhagen, T.R. (2000) Distinct effects of surfactant protein A and D deficiency during bacterial infection on the lung. J Immunol 165, 3934–3940PubMedGoogle Scholar
  20. 20.
    Hickling, T.P., Bright, H., Wing, K., Gower, D., Martin, S.L., Sim, R.B. and Malhotra, R. (1999) A recombinant trimeric surfactant protein D carbohydrate recognition domain inhibits respiratory syncytial virus infection in vitro and in vivo. Eur J Immunol 29, 3478–3484PubMedCrossRefGoogle Scholar
  21. 21.
    van Iwaarden, F., Welmers, B., Verhoef, J., Haagsman, H.P., and van Golde, L.MG. 1990) Pulmonary surfactant protein A enhances the host-defense mechanism of rat alveolar macrophages. Am J Respir Cell Mol Biol 2, 91–98PubMedGoogle Scholar
  22. 22.
    Weissbach, S., Neuendank, A., Pettersson, M., Schaberg T., and Pison, U. (1994) Surfactant protein A modulates release of reactive oxygen species from alveolar macrophages. Am J Physiol 267, L660–L666PubMedGoogle Scholar
  23. 23.
    Weber, H., Heilmann, P., Meyer, B., and Maier, K.L. (1990) Effect of canine surfactant protein (SP-A) on the respiratory burst of phagocytic cells. FEBS Lett 270, 90–94PubMedCrossRefGoogle Scholar
  24. 24.
    Katsura, H., Kawada, H., and Konno, K. (1993) Rat surfactant apo-protein A (SP-A) exhibits antioxidant effects on alveolar macrophages. Am J Respir Cell Mol Biol 6, 446–452Google Scholar
  25. 25.
    Blau, H., Riklis, S., van Iwaarden, J.F., McCormack, R.X., and Kalina, M. (1997) Nitric oxide production by rat alveolar macrophages can be modulated in vitro by surfactant protein A. Am J Physiol 272, L1198–L1204PubMedGoogle Scholar
  26. 26.
    Wright, J.R., Zlogar, D.F., Taylor, J.C., Zlogar, T.M., and Restrepo, C.I. (1999) Effects of endotoxin on surfactant protein A and D stimulation of NO production by alveolar macrophages. Am J Physiol 276, L650–L658PubMedGoogle Scholar
  27. 27.
    Stamme, C., Walsh, E., and Wright, J.R. (2000) Surfactant protein A differentially regulates IFN-γ and LPS-induced nitrite production by rat alveolar macrophages, m J Respir Cell Mol Biol 23, 772–779Google Scholar
  28. 28.
    Hickman-Davis, J., Gibbs-Erwin, J., Lindsey, J.R., and Matalon, S. (1999) Surfactant protein A mediates mycoplasmacidal activity of alveolar macrophages by production of peroxynitrite. Proc Natl Acad Sci USA 96, 4953–4958PubMedCrossRefGoogle Scholar
  29. 29.
    Pasula, R., Wright, J.R., Kachel, D.L., and Martin, II, W.J. (1999) Surfactant protein A suppresses reactive nitrogen intermediates by alveolar macrophages in response to Mycobacterium tuberculosis. J Clin Invest 103, 483–490PubMedCrossRefGoogle Scholar
  30. 30.
    van Iwaarden, J. F., Shimizu, H., van Golde, P. H. M, Voelker, D. R., and van Golde, L.M.G. (1992) Rat surfactant protein D enhances the production of oxygen radicals by rat alveolar macrophages. Biochem J 286, 5–8PubMedGoogle Scholar
  31. 31.
    Hartshorn, K.L., Crouch, E.C., White, M.R, Eggleton, P., Tauber, A.I., Chang, D., and Sastry, K. (1994) Evidence for a protective role of pulmonary surfactant protein D (SP-D) against influenza A viruses. J Clin Invest 94, 311–319PubMedCrossRefGoogle Scholar
  32. 32.
    Kremlev, S.G., Umstead, T.M., and Phelps, D.S. (1994) Effects of surfactant protein A and surfactant lipids on lymphocyte proliferation in vitro. Am J Physiol 267, L357–L364PubMedGoogle Scholar
  33. 33.
    Borron, P., Veldhuizen, R.A.W., Lewis, J.F., Possmayer, F., Caveney, A., Inchley, K., McFadden, R.G., and Fraher, L.J. (1996) Surfactant associated protein-A inhibits human lymphocyte proliferation and IL-2 production. Am J Respir Cell Mol Biol. 15, 115–121PubMedGoogle Scholar
  34. 34.
    Kanellopoulos, J.M., DePetris, S., Leca, G., and Crumpton, M.J. (1985) The mitogenic lectin from Phaseolus vulgaris does not recognize the T3 antigen of human T lymphocytes. Eur J Immunol 15, 479–486PubMedCrossRefGoogle Scholar
  35. 35.
    Borron, P.J., Crouch, E.C, Lewis, J.F., Wright, J.R., Possmayer, F., and Fraher, L.J. (1998) Recombinant rat surfactant-associated protein D inhibits human T lymphocyte proliferation and IL-2 production. J Immunol 161, 4599–4603PubMedGoogle Scholar
  36. 36.
    Wang, J.Y., Shieh, C.C., You, P.F., Lei, H.Y., and Reid, K.B.M. (1998) Inhibitory effect of pulmonary surfactant protein A and D on allergen-induced lymphocyte proliferation and histamine release in children with asthma Am J Respir Crit Care Med 158, 510–518PubMedGoogle Scholar
  37. 37.
    Mcintosh, J.C., Mervin-Blake, S., Conner, E., and Wright, J.R. (1996) Surfactant protein A protects growing cells and reduces TNF-α activity from LPS-stimulated macrophages. Am J Physiol 271, L310–L319PubMedGoogle Scholar
  38. 38.
    Aria-Diaz, J., Garcia-Verdugo, I., Casals, C, Sanchez-Rico, N., Vara, E., and Balibrea, J.L. (2000) Effect of surfactant protein A (SP-A) on the production of cytokines by human pulmonary macrophages. Shock 14, 300–306CrossRefGoogle Scholar
  39. 39.
    Cheng, G, Ueda, T., Nakajima, H., Nakajima, A., Arima, M., Kinjyo, S., and Fukuda, T. (2000) Surfactant protein A exhibits inhibitory effect on eosinophils IL-8 production. Biochem Biophy Res Comm 270, 831–835CrossRefGoogle Scholar
  40. 40.
    Rosseau, S., Hammerl, P., Maus, U., Gunther, A., Seeger, W., Grimminger, F., and Lohmeyer, J. (1999) Surfactant protein A down-regulates proinflammatory cytokine production evoked by Candida albicans in human alveolar macrophages and monocytes. J Immun 163, 4495–4502PubMedGoogle Scholar
  41. 41.
    LeVine, A.M., Kurak, K.E., Bruno, M.D., Stark, J.M., Whitsett, J.A., and Korfhagen, T.R. (1998) Surfactant protein-A deficient mice are susceptible to Pseudomonas aeruginosa infection. Am J Resp Cell Mol Biol 19, 700–708Google Scholar
  42. 42.
    Korfhagen, T.R., Bruno, M.D., Silver, J.A., Whitsett, J.A., and LeVine, A.M. Enhanced K. pneumoniae pulmonary infection in mice lacking SP-A. Am J Respir Care Med 161, A514 (Abstract)Google Scholar
  43. 43.
    LeVine, A.M., Gwozdz, J., Stark, J., Bruno, M., Whitsett, J., and Korfhagen, T. (1999) Surfactant protein-A enhances respiratory syncytial virus clearance in vivo. J Clin Invest 103, 1015–1021PubMedCrossRefGoogle Scholar
  44. 44.
    Wert, S.E., Yoshida, M., LeVine, A.M., Ikegami, M., Jones, T., Ross, G.F., Fisher, J.H., Korfhagen, T.R., and Whitsett, J.A. (2000) Increased metalloproteinase activity, oxidant production, and emphysema in surfactant protein D gene-inactivated mice. Proc Natl Acad Sei USA 97, 5972–5977CrossRefGoogle Scholar
  45. 45.
    LeVine, A.M., Gwozdz, J., Fisher, J., Whitsett, J., and Korfhagen, T. (2000) Surfactant protein-D modulates lung inflammation with respiratory syncytial virus infection in vivo. Am J Respir Crit Care Med 161, A515Google Scholar
  46. 46.
    LeVine, A.M., Lotze, A., Stanley, S., Stroud, C, O’Donnell, R., Whitsett, J. and Pollack, M.M. (1996) Surfactant content in children with inflammatory lung disease. Crit Care Med 24, 1062–1067PubMedCrossRefGoogle Scholar
  47. 47.
    Pison, U., Obertacke, U., Seeger, W., and Hawgood, S. (1992) Surfactant protein A (SP-A) is decreased in acute parenchymal lung injury associated with polytrauma. Eur J Clin Invest 22, 712–718PubMedCrossRefGoogle Scholar
  48. 48.
    Green, K.E., Wright, J.R., Steinberg, K.P., Ruzinski, J.T., Caldwell, E., Wong, W.B., Hull, W., Whitsett, J.A., Akino, T., Kuroki, Y., Nagae, H., Hudson, L.D., and Martin, T.R. (1999) Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med 160, 1843–1850Google Scholar
  49. 49.
    Baker, C.S., Evans, T.W., Rändle, B.J., and Haslam, P.L. (1999) Damage to surfactantspecific protein in acute respiratory distress syndrome. Lancet 353, 1232–1237PubMedCrossRefGoogle Scholar
  50. 50.
    Postle, A.D., Mander, A., Reid, K.B.M., Wang, J.Y., Wright, S.M., Moustake, M., and Warner, J.O. (1999) Deficient hydrophilic lung surfactant protein A and D with normal surfactant phospholipid molecular species in cystic fibrosis. Am J Respir Cell Mol Biol 20, 90–98PubMedGoogle Scholar
  51. 51.
    Viviano, C.J., Bakewell, W.E., Dixon, D., Dethloff, L.A., and Hook, G.E.R. (1995) Altered regulation of surfactant phospholipid and protein during acute pulmonary inflammation. Biochim Biophy Acta 1259, 235–244CrossRefGoogle Scholar
  52. 52.
    Lehrer, R.I., Lichtenstein, A.K., and Ganz, T. (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11, 105–128PubMedCrossRefGoogle Scholar
  53. 53.
    Rice, W.G., Ganz, T., Kinkade, J.M., Selsted, M.E., Lehrer, R.I., and Parmely, R.T. (1987) Defensin-rich dense granules of human neutrophils. Blood 70, 757–765PubMedGoogle Scholar
  54. 54.
    Gabay, J.E., Scott, R.W., Campanelli, D., Griffith, J., Wilde, C., Marra, M.N., Seeger, M., and Nathan, C.F. (1989) Antibiotic proteins of human polymorphonuclear leukocytes. Proc Natl Acad Sei USA 86, 5610–5614CrossRefGoogle Scholar
  55. 55.
    Selsted, M.E., Miller, S.I., Henschen, A.H., and Ouellette, A.J. (1992) Enteric defensins: antibiotic peptide components of intestine host defense J Cell Biol 118, 929–936PubMedCrossRefGoogle Scholar
  56. 56.
    Porter, E., Liu, L., Oren, A., Anton, P., and Ganz, T. (1997) Localization of human intestinal defensin 5 in Paneth cell granules. Infect Immun 65, 2389–2395PubMedGoogle Scholar
  57. 57.
    Porter, E.M., Poles, M.A., Lee, J.S., Naitoh, J., Bevins, C.L. and Ganz, T. (1998) Isolation of human intestinal defensins from ileal neobladder urine. FEBS Lett 434, 272–276PubMedCrossRefGoogle Scholar
  58. 58.
    Jones, D.E., and Bevins, C.L. (1993) Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett 315, 187–192PubMedCrossRefGoogle Scholar
  59. 59.
    Frye, M., Bargon, J., Dauletbaev, N., Weber, A., Wagner, T.O.F., and Gropp, R. (2000) Expression of human-α-defensin 5 (HD5) mRNA in nasal and bronchial epithelial cells. J Clin Pathol 53, 770–773PubMedCrossRefGoogle Scholar
  60. 60.
    Ganz, T. and Lehrer, R.I. (1995) Defensins. Pharmac Ther 66:191–205CrossRefGoogle Scholar
  61. 61.
    Russell, J.P., Diamond, G., Tarver, A.P., Scanlin, T.F. and Bevins, C.L. (1996) Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumor necrosis factor alpha. Infect Immun 64, 1565–1568PubMedGoogle Scholar
  62. 61.
    Bensch, K.W., Raida, M., Magert, H.J., Schulz-Knappe, and P., Forssmann, W.G. ((1995) hBD-1: a novel ß-defensin from human plasma. FEBS Lett 368, 331–335.PubMedCrossRefGoogle Scholar
  63. 62.
    Harder, J., Bartels, J., Christophers, E., and Schroder, J.M. (1997) A peptide antibiotic from human skin. Nature 387, 861PubMedCrossRefGoogle Scholar
  64. 63.
    Huttner, K.M. and Bevins, C.L. (1999) Antimicrobial peptides as mediators of epithelial host defense. Pediatr Res 45, 785–794PubMedCrossRefGoogle Scholar
  65. 64.
    Singh, P.K., Kia, H.P., Wiles, K., Hesselberth, J., Liu, L., and Conway, B.D. (1998) Production of ß-defensins by human airway epithelia. Proc Natl Acad Sei USA 95, 14961–14966CrossRefGoogle Scholar
  66. 65.
    Liu, L., Zhao, C, Heng, H.H.Q. and Ganz, T. (1997) The human ß-defensin-1 and α-defensins are encoded by adjacent genes: Two peptide families with differing disulfide topology share a common ancestry. Genomics 43, 316–320PubMedCrossRefGoogle Scholar
  67. 66.
    Michaeklson, D., Rayner, J., Couto, M., and Ganz, T. (1992) Cationic defensins arise from charge neutralized propeptides: a mechanism for avoiding leukocyte autotoxicity? J Leuk Biol 51, 634–639Google Scholar
  68. 67.
    Valore, E.V., and Ganz, T. (1992) Posttranslational processing of defensins in immature human myeloid cells. Blood 19, 1538–1544Google Scholar
  69. 68.
    Wilde, CG., Griffith, J.E., Marra, M.N., Snable, J.L., and Scott, R.W. (1989) Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem 264, 11200–11203PubMedGoogle Scholar
  70. 69.
    Greenwald, G.I., and Ganz, T. (1987) Defensins mediate the microbicidal activity of human neutrophil granule extract against Acinetobacter calcoaceticus. Infect Immun 55, 1365–1368PubMedGoogle Scholar
  71. 70.
    Miyasaki, K.T., Bodeau, A.L., Ganz, T., Selsted, M.E., and Lehrer, R.I. (1990) In vitro sensitivity of oral gram-negative, facultative bacteria to the bactericidal activity of human neutrophil defensins. Infect Immun 58, 3934–3940PubMedGoogle Scholar
  72. 71.
    Ogata, K., Linzer, B.A., Zuberi, R.I., Ganz, T., Lehrer, R.I., and Catanzaro, A. (1992) Activity of defensins from human neutrophilic granulocytes against Mycobacterium avium-Mycobacterium intracellulars. Infect Immun 60, 4720–4725PubMedGoogle Scholar
  73. 72.
    Yasin, B., Harwig, S.S., Lehrer, R.I., and Wagar, E.A. (1996) Susceptibility of Chlamydia trachomatis to protegrins and defensins. Infect Immun 64, 709–713PubMedGoogle Scholar
  74. 73.
    Aley, S.B., Zimmerman, M., Hetsko, M., Selsted, M.E., and Gillin, F.D. (1994) Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect Immun 62, 5397–5403PubMedGoogle Scholar
  75. 74.
    Lehrer, R.I., Barton, A., Daher, K.A., Harwig, S.S., Ganz, T., and Selsted, M.E. (1989) Interaction of human defensins with Escherichia coli. J Clin Invest 84, 553–561PubMedCrossRefGoogle Scholar
  76. 75.
    Kagan, B.L., Selsted, M.E., Ganz, T., and Lehrer, R.I. (1990) Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sei USA 87, 210–214CrossRefGoogle Scholar
  77. 76.
    Befus, A.D., Mowat, C., Gilchrist, M., Hu J., Solomon, S., and Bateman, A. (1999) Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol 163, 947–953PubMedGoogle Scholar
  78. 77.
    Territo, M.C., Ganz, T., Selsted, M.E., and Lehrer, R. (1989) Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest 84, 2017–2020PubMedCrossRefGoogle Scholar
  79. 78.
    Chertov, O., Michiel, D.F., Xu, L., Wang, J.M., Tani, K., Murphy, W.J., Longo, D.L., Taub, D.D., and Oppenheim, J.J. (1996) Identification of defensin-1, defensin-2, and cap37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem 271, 2935–2940PubMedCrossRefGoogle Scholar
  80. 79.
    Lillard, J.W., Jr., Boyaka, P.N., Chertov, O., Oppenheim, J.J., and McGhee, J.R. (1999) Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc Natl Acad Sei USA 96, 651–656CrossRefGoogle Scholar
  81. 80.
    Agerberth, B., Charo, J., Werr, J., Olsson, B., Idali, F., Lindbom, L., Kiessling, R., Jornvall, H., Wigzell, H., and Gudmundsson, G.H. (2000) The human antimicrobial and chemotactic peptide Ll-37 and α-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96, 3086–3093PubMedGoogle Scholar
  82. 81.
    Yang, D., Chertov, O., Bykovskaia, S.N., Chen, Q., Buffo, M.J., Shogan, J., Anderson, M., Schroder, J.M., Wang, J.M. Howard, O.M.Z., and Oppenheim, J.J. (1999) ß-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528PubMedCrossRefGoogle Scholar
  83. 82.
    van Wetering, S., Sterk, P.J., Rabe, K.F., and Hiemstra, P.S. (1999) Defensins: key players or bystanders in infection, injury and repair in the lung? J Allergy Clin Immunol 104, 1131–1138PubMedCrossRefGoogle Scholar
  84. 83.
    Panyutich, A.V., Panyutich, E.A., Krapivin, V.A., Baturevich, E.A., and Ganz, T. (1993) Plasma defensin concentrations are elevated in patients with septicemia or bacterial meningitis. J Lab Clin Med 122, 202–207PubMedGoogle Scholar
  85. 84.
    Ashitani, J., Mukae, H., Nakazato, M., Ihi, T., Mashimoto, H., Kadota, J., Kohno, S., and Matsukura S. (1998) Elevated concentrations of defensins in bronchoalveolar lavage fluid in diffuse panbronchiolitis. Eur Respir 711, 104–111CrossRefGoogle Scholar
  86. 85.
    van Wetering, S., Mannesse-Lazeroms, S.P.G., van Sterkenburg, M.A.J.A., Daha M.R., Dijkman J.H., Hiemstra P.S. (1997) Effect of defensins on IL-8 synthesis in airway epithelial cells. Am J Physiol 272, L888–L896PubMedGoogle Scholar
  87. 86.
    Pittet, J.F., Mackersie, R.C., Martin, T.R., and Matthay, M.A. (1997) Biological markers of acute lung injury: prognostic and pathogenetic significance. Am J Respir Crit Care Med 155, 1187–1205PubMedGoogle Scholar
  88. 87.
    Panyutich, A.V., Hiemstra, P.S., van Wetering, S., and Ganz, T. (1995) Human neutrophil defensin and serpins form complexes and inactivate each other. Am J Respir Cell Mol Biol 12, 351–357PubMedGoogle Scholar
  89. 88.
    van Wetering, S., Mannesse-Lazeroms, S.P.G., Dijkman, J.H., and Hiemstra, P.S. (1997) Effect of neutrophil serine proteinases and defensins on lung epithelial cells: modulation of cytotoxicity and IL-8 production. J Leukoc Biol 62, 217–226PubMedGoogle Scholar
  90. 89.
    van Wetering, S., Rahman, I., Hiemstra, P.S. and MacNee, W. (1998) Role of intracellular glutathione in neutrophil defensin-induced IL-8 synthesis and cytotoxicity in airway epithelial cells. Eur Respir J 12, 420SGoogle Scholar
  91. 90.
    Lichtenstein, A.K., Ganz, T., Selsted, M.E., and Lehrer, R.I. (1988) Synergistic cytolysis mediated by hydrogen peroxide combined with peptide defensins. Cellular Immun 114, 104–116CrossRefGoogle Scholar
  92. 91.
    van den Berg, R.H., Faber-Krol, M.C., van Wetering, S., Hiemstra, P.S., and Daha, M.R. (1998) Inhibition of activation of the classical pathway of complement by human neutrophil defensins. Blood 92, 3898–3903PubMedGoogle Scholar
  93. 92.
    Idell, S., James, K.K., Levin, E.G., Schwartz, B.S., Manchanda, N., Maunder, R.J., Martin, T.R., McLarty, J., and Fair, D.S. (1989) Local abnormalities in coagulation and fibrinolytic pathways predispose to alveolar fibrin deposition in the adult respiratory distress syndrome. J Clin Invest 84, 695–705PubMedCrossRefGoogle Scholar
  94. 93.
    Higazi, A.A.R., Ganz, T., Kariko, K., and Cines, D.B. (1996) Defensin modulates tissuetype plasminogen activator and plasminogen binding to fibrin and endothelial cells. J BiolChem 271, 17650–17655Google Scholar
  95. 94.
    Donnelly, T.J., Meade, P., Jagels, M., Cryer, H.G., Law, M.M., Hugli, T.H., Shoemaker, W.C., and Abraham, E. (1994) Cytokine, complement, endotoxin profiles associated with the development of the adult respiratory distress syndrome after severe injury. Crit Care Med 22, 768–777PubMedCrossRefGoogle Scholar
  96. 95.
    Hiratsuka, T., Nakazato, M., Date, Y., Ashitani, J.I., Minematsu, T., Chino, N., and Matsukura, S. (1998) Identification of human ß-defensin-2 in respiratory tract and plasma and its increase in bacterial pneumonia. Biochem Biophys Res Commun 249, 943–947PubMedCrossRefGoogle Scholar
  97. 96.
    Harder, J., Meyer-Hoffert, U., Teran, L.M, Schwichtenberg, L., Bartels, J., Maune, S., and Schroder, J.M. (2000) Mucoid Pseudomonas aeruginosa, TNF-α, and IL-lß, but not IL-6, induce human ß-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 22, 714–721PubMedGoogle Scholar
  98. 97.
    Goldman, M.J., Anderson, G.M., Stolzenberg, E.D., Kari, U.P., Zasloff, M., and Wilson, J.M. (1997) Human ß-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88, 553–560PubMedCrossRefGoogle Scholar
  99. 98.
    Matsui, H., Grubb, B.R., Tarran, R, Randell, S.H., Gatzy, J.T., Davis, C.W., and Boucher, R.C. (1998) Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airway disease. Cell 95, 1005–1015PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Ann Marie LeVine
    • 1
  1. 1.Division of Pulmonary Biology and Critical Care MedicineChildren’s Hospital Medical Center and Children’s Hospital Research FoundationCincinnatiUSA

Personalised recommendations