Advertisement

Considerations of Sex Differences in Musculoskeletal Anatomy

  • Phillip S. Sizer
  • C. Roger James
Chapter

Abstract

The musculoskeletal anatomy of women and men is grossly similar yet individually distinctive. Sexual dimorphism in the human musculoskeletal system is apparent, but more subtle than in other species. Some musculoskeletal sex differences in humans are present at an early age, while others tend to appear later in life. Sex differences in gross skeletal geometry and specific tissue characteristics are common. Women tend to have different characteristics of specific bones and bony features than men which have been explained by both genetic and environmental factors. Women and men appear to have several differences in collagenous, cartilage, and bone tissues, which may predispose women to certain pathologies such as osteoarthritis and osteoporosis later in life. Sexual dimorphism can manifest itself in specific differences in each joint throughout the body, possibly resulting in sex differences in clinical pathology and symptomology such as differences in shoulder impingement; laxity and idiopathic capsulitis; elbow tendinosis; carpal tunnel syndrome; hip fracture and labral tears; anterior cruciate ligament injuries; ankle sprains and Achilles tendinopathy; cervical spine macrotrauma; thoracolumbar postural changes including kyphosis, lordosis, and/or scoliosis; and sacroiliac joint conditions. Consideration of the sex differences in musculoskeletal anatomy is important for both the general public and health care professionals in order to provide a basis for understanding normal and abnormal conditions that may exist. Moreover, a thorough appreciation that men and women have differences in musculoskeletal anatomy may help in the understanding that they have distinctive health care needs.

Keywords

Sexual dimorphism Female Pathoanatomy Anatomy Sex differences Structure 

References

  1. 1.
    Walker PBM. Chambers science and technology dictionary. Cambridge: W & R Chambers Ltd and Cambridge University Press.Google Scholar
  2. 2.
    Anonymous. Webster’s online dictionary. Internet [serial online] (2011). Accessed 15 Feb 2012.Google Scholar
  3. 3.
    Smith FW, Smith PA. Musculoskeletal differences between males and females. Sports Med Arthrosc Rev. 2002;10:98–100.CrossRefGoogle Scholar
  4. 4.
    Chmielewski T, Ferber R. Rehabilitation considerations for the female athlete. In: Andrews JR, Harrelson GL, Wilk KE, editors. Physical rehabilitation of the injured athlete. 3rd ed. Philadelphia, PA: Saunders; 2004. p. 315–28.Google Scholar
  5. 5.
    Anonymous. Clinical growth charts. CDC gov [serial online] (2006).Google Scholar
  6. 6.
    Anonymous. Sexual dimorphism. Answers com [serial online] (2006).Google Scholar
  7. 7.
    Horton MG, Hall TL. Quadriceps femoris muscle angle: normal values and relationships with gender and selected skeletal measures. Phys Ther. 1989;69:897–901.PubMedCrossRefGoogle Scholar
  8. 8.
    Kersnic B, Iglic A, Kralj-Iglic V, et al. Determination of the femoral and pelvic geometrical parameters that are important for the hip joint contact stress: differences between female and male. Pflugers Arch. 1996;431:R207–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Souryal TO, Freeman TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med. 1993;21:535–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Woodland LH, Francis RS. Parameters and comparisons of the quadriceps angle of college-aged men and women in the supine and standing positions. Am J Sports Med. 1992;20:208–11.PubMedCrossRefGoogle Scholar
  11. 11.
    Yoshioka Y, Siu DW, Scudamore RA, Cooke TD. Tibial anatomy and functional axes. J Orthop Res. 1989;7:132–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Shelbourne KD, Davis TJ, Klootwyk TE. The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med. 1998;26:402–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Ireland ML, Ballantyne BT, Little K, McClay IS. A radiographic analysis of the relationship between the size and shape of the intercondylar notch and anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2001;9:200–5.PubMedCrossRefGoogle Scholar
  14. 14.
    LaPrade RF, Burnett QM. Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. A prospective study. Am J Sports Med. 1994;22:198–202.PubMedCrossRefGoogle Scholar
  15. 15.
    Hashemi J, Chandrashekar N, Gill B, et al. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am. 2008;90:2724–34.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tillman MD, Bauer JA, Cauraugh JH, Trimble MH. Differences in lower extremity alignment between males and females. Potential predisposing factors for knee injury. J Sports Med Phys Fitness. 2005;45:355–9.PubMedGoogle Scholar
  17. 17.
    Gualdi-Russo E. Study on long bones: variation in angular traits with sex, age, and laterality. Anthropol Anz. 1998;56:289–99.PubMedGoogle Scholar
  18. 18.
    LaVelle M. Natural selection and developmental sexual variation in the human pelvis. Am J Phys Anthropol. 1995;98:59–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Patriquin ML, Loth SR, Steyn M. Sexually dimorphic pelvic morphology in South African whites and blacks. Homo. 2003;53:255–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Igbigbi PS, Msamati BC, Ng'Ambi TM. Intercondylar shelf angle in adult black Malawian subjects. Clin Anat. 2001;14:254–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Iscan MY, Shihai D. Sexual dimorphism in the Chinese femur. Forensic Sci Int. 1995;74:79–87.PubMedCrossRefGoogle Scholar
  22. 22.
    King CA, Iscan MY, Loth SR. Metric and comparative analysis of sexual dimorphism in the Thai femur. J Forensic Sci. 1998;43:954–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Macho GA. Is sexual dimorphism in the femur a “population specific phenomenon”? Z Morphol Anthropol. 1990;78:229–42.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Mall G, Graw M, Gehring K, Hubig M. Determination of sex from femora. Forensic Sci Int. 2000;113:315–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Purkait R, Chandra H. A study of sexual variation in Indian femur. Forensic Sci Int. 2004;146:25–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Iscan MY, Miller-Shaivitz P. Determination of sex from the tibia. Am J Phys Anthropol. 1984;64:53–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Iscan MY, Yoshino M, Kato S. Sex determination from the tibia: standards for contemporary Japan. J Forensic Sci. 1994;39:785–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Ruff CB, Hayes WC. Cross-sectional geometry of Pecos Pueblo femora and tibiae–a biomechanical investigation: II. Sex, age, side differences. Am J Phys Anthropol. 1983;60:383–400.PubMedCrossRefGoogle Scholar
  29. 29.
    Steele DG. The estimation of sex on the basis of the talus and calcaneus. Am J Phys Anthropol. 1976;45:581–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Bidmos MA, Asala SA. Discriminant function sexing of the calcaneus of the South African whites. J Forensic Sci. 2003;48:1213–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Riepert T, Drechsler T, Schild H, Nafe B, Mattern R. Estimation of sex on the basis of radiographs of the calcaneus. Forensic Sci Int. 1996;77:133–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Hogler W, Blimkie CJ, Cowell CT, et al. A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging. Bone. 2003;33:771–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Ashizawa K, Kumakura C, Kusumoto A, Narasaki S. Relative foot size and shape to general body size in Javanese, Filipinas and Japanese with special reference to habitual footwear types. Ann Hum Biol. 1997;24:117–29.PubMedCrossRefGoogle Scholar
  34. 34.
    Axer H, von Keyserlingk DG, Prescher A. Collagen fibers in linea alba and rectus sheaths. J Surg Res. 2001;96:239–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Tzaphlidou M. Diameter distributions of collagenous tissues in relation to sex. A quantitative ultrastructural study. Micron. 2001;32:333–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Vitellaro-Zuccarello L, Cappelletti S, Dal Pozzo Rossi V, Sari-Gorla M. Stereological analysis of collagen and elastic fibers in the normal human dermis: variability with age, sex, and body region. Anat Rec. 1994;238:153–62.PubMedCrossRefGoogle Scholar
  37. 37.
    Zanze M, Souberbielle JC, Kindermans C, Rossignol C, Garabedian M. Procollagen propeptide and pyridinium cross-links as markers of type I collagen turnover: sex- and age-related changes in healthy children. J Clin Endocrinol Metab. 1997;82:2971–7.PubMedGoogle Scholar
  38. 38.
    Whiting WC, Zernicke RF. Biomechanics of musculoskeletal injury. Champaign, IL: Human Kinetics; 2008.Google Scholar
  39. 39.
    Nordin M, Frankel VH. Basic biomechanics of the musculoskeletal system. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2001.Google Scholar
  40. 40.
    Osakabe T, Hayashi M, Hasegawa K, et al. Age- and gender-related changes in ligament components. Ann Clin Biochem. 2001;38:527–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Tamir E, Brenner S. Gender differences in collagen diseases. Skinmed. 2003;2:113–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Ding C, Cicuttini F, Scott F, Glisson M, Jones G. Sex differences in knee cartilage volume in adults: role of body and bone size, age and physical activity. Rheumatology (Oxford). 2003;42:1317–23.CrossRefGoogle Scholar
  43. 43.
    Jones G, Glisson M, Hynes K, Cicuttini F. Sex and site differences in cartilage development: a possible explanation for variations in knee osteoarthritis in later life. Arthritis Rheum. 2000;43:2543–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Lanyon P, Muir K, Doherty S, Doherty M. Age and sex differences in hip joint space among asymptomatic subjects without structural change: implications for epidemiologic studies. Arthritis Rheum. 2003;48:1041–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Larbre JP, Da Silva JA, Moore AR, James IT, Scott DL, Willoughby DA. Cartilage contribution to gender differences in joint disease progression. A study with rat articular cartilage. Clin Exp Rheumatol. 1994;12:401–8.PubMedGoogle Scholar
  46. 46.
    Cicuttini FM, Wluka A, Bailey M, et al. Factors affecting knee cartilage volume in healthy men. Rheumatology (Oxford). 2003;42:258–62.CrossRefGoogle Scholar
  47. 47.
    Faber SC, Eckstein F, Lukasz S, et al. Gender differences in knee joint cartilage thickness, volume and articular surface areas: assessment with quantitative three-dimensional MR imaging. Skeletal Radiol. 2001;30:144–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Mouritzen U, Christgau S, Lehmann HJ, Tanko LB, Christiansen C. Cartilage turnover assessed with a newly developed assay measuring collagen type II degradation products: influence of age, sex, menopause, hormone replacement therapy, and body mass index. Ann Rheum Dis. 2003;62:332–6.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Da Silva JA, Larbre JP, Seed MP, et al. Sex differences in inflammation induced cartilage damage in rodents. The influence of sex steroids. J Rheumatol. 1994;21:330–7.PubMedGoogle Scholar
  50. 50.
    Fares JE, Choucair M, Nabulsi M, Salamoun M, Shahine CH, Fuleihan G. Effect of gender, puberty, and vitamin D status on biochemical markers of bone remodeling. Bone. 2003;33:242–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Nuckley DJ, Eck MP, Carter JW, Ching RP. Spinal maturation affects vertebral compressive mechanics and vBMD with sex dependence. Bone. 2004;35:720–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Katzburg S, Lieberherr M, Ornoy A, Klein BY, Hendel D, Somjen D. Isolation and hormonal responsiveness of primary cultures of human bone-derived cells: gender and age differences. Bone. 1999;25:667–73.PubMedCrossRefGoogle Scholar
  53. 53.
    Khosla S, Melton III LJ, Atkinson EJ, O'Fallon WM, Klee GG, Riggs BL. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab. 1998;83:2266–74.PubMedGoogle Scholar
  54. 54.
    Beck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone. 2000;27:437–44.PubMedCrossRefGoogle Scholar
  55. 55.
    Kaptoge S, Dalzell N, Loveridge N, Beck TJ, Khaw KT, Reeve J. Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and women aged over 65. Bone. 2003;32:561–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Schuit SC, Van der KM, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34:195–202.PubMedCrossRefGoogle Scholar
  57. 57.
    Krall EA, Dawson-Hughes B, Hirst K, Gallagher JC, Sherman SS, Dalsky G. Bone mineral density and biochemical markers of bone turnover in healthy elderly men and women. J Gerontol A Biol Sci Med Sci. 1997;52:M61–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Forwood MR, Bailey DA, Beck TJ, Mirwald RL, Baxter-Jones AD, Uusi-Rasi K. Sexual dimorphism of the femoral neck during the adolescent growth spurt: a structural analysis. Bone. 2004;35:973–81.PubMedCrossRefGoogle Scholar
  59. 59.
    Mosekilde L. Sex differences in age-related loss of vertebral trabecular bone mass and structure–biomechanical consequences. Bone. 1989;10:425–32.PubMedCrossRefGoogle Scholar
  60. 60.
    Henry YM, Eastell R. Ethnic and gender differences in bone mineral density and bone turnover in young adults: effect of bone size. Osteoporos Int. 2000;11:512–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Minisola S, Dionisi S, Pacitti MT, et al. Gender differences in serum markers of bone resorption in healthy subjects and patients with disorders affecting bone. Osteoporos Int. 2002;13:171–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Smith EL, Smith KA, Gilligan C. Exercise, fitness, osteoarthritis, and osteoporosis. In: Bouchard C, Shephard RJ, Stephens T, Sutton JR, McPherson BD, editors. Exercise, fitness, and health: a consensus of current knowledge. Champaign, IL: Human Kinetics; 1990. p. 517–28.Google Scholar
  63. 63.
    Harrison JE, Chow R. Discussion: exercise, fitness, osteoarthritis, and osteoporosis. In: Bouchard C, Shephard RJ, Stephens T, Sutton JR, McPherson BD, editors. Exercise, fitness, and health: a consensus of current knowledge. Champaign, IL: Human Kinetics; 1990. p. 529–32.Google Scholar
  64. 64.
    Anonymous. Osteoporosis: peak bone mass in women. Osteo org [serial online] (2005).Google Scholar
  65. 65.
    Pandley SK, Shamal S, Kuman S, Shukla VK. Articular branch of the axillary artery and its clinical implication. Nepal Med Coll J. 2003;5:61–3.Google Scholar
  66. 66.
    Bhatia DN, de Beer JF, du Toit DF. Coracoid process anatomy: implications in radiographic imaging and surgery. Clin Anat. 2007;20:774–84.PubMedCrossRefGoogle Scholar
  67. 67.
    Radas CBPHG. The coracoid impingement of the subscapularis tendon: a cadaver study. J Shoulder Elbow Surg. 2004;13:154–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Bigliani LU, Morrison DS, April E. The morphology of the acromion and its relationship to rotator cuff tears. Orthop Trans. 1986;10:228.Google Scholar
  69. 69.
    Bigliani LU, Ticker JB, Flatow EL, Soslowsky LJ, Mow VC. The relationship of acromial architecture to rotator cuff disease. Clin Sports Med. 1991;10:823–38.PubMedGoogle Scholar
  70. 70.
    Berbig R, Weishaupt D, Prim J, Shahin O. Primary anterior shoulder dislocation and rotator cuff tears. J Shoulder Elbow Surg. 1999;8:220–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Speer KP, Osbahr DC, Montella BJ, Apple AS, Mair SD. Acromial morphotype in the young asymptomatic athletic shoulder. J Shoulder Elbow Surg. 2001;10:434–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Getz JD, Recht MP, Piraino DW, et al. Acromial morphology: relation to sex, age, symmetry, and subacromial enthesophytes. Radiology. 1996;199:737–42.PubMedCrossRefGoogle Scholar
  73. 73.
    Gill TJ, McIrvin E, Kocher MS, Homa K, Mair SD, Hawkins RJ. The relative importance of acromial morphology and age with respect to rotator cuff pathology. J Shoulder Elbow Surg. 2002;11:327–30.PubMedCrossRefGoogle Scholar
  74. 74.
    Wang JC, Shapiro MS. Changes in acromial morphology with age. J Shoulder Elbow Surg. 1997;6:55–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Mahakkanukrauh P, Surin P. Prevalence of osteophytes associated with the acromion and acromioclavicular joint. Clin Anat. 2003;16:506–10.PubMedCrossRefGoogle Scholar
  76. 76.
    Graichen H, Bonel H, Stammberger T, Englmeier KH, Reiser M, Eckstein F. Sex-specific differences of subacromial space width during abduction, with and without muscular activity, and correlation with anthropometric variables. J Shoulder Elbow Surg. 2001;10:129–35.PubMedCrossRefGoogle Scholar
  77. 77.
    McKenna L, Straker L, Smith A, Cunningham J. Differences in scapular and humeral head position between swimmers and non-swimmers. Scand J Med Sci Sports. 2011;21:206–14.PubMedCrossRefGoogle Scholar
  78. 78.
    Gill TJ, Zarins B. Open repairs for the treatment of anterior shoulder instability. Am J Sports Med. 2003;31:142–53.PubMedCrossRefGoogle Scholar
  79. 79.
    Borsa PA, Sauers EL, Herling DE. Patterns of glenohumeral joint laxity and stiffness in healthy men and women. Med Sci Sports Exerc. 2000;32:1685–90.PubMedCrossRefGoogle Scholar
  80. 80.
    Hawkins RJ, Mohtadi NG. Controversy in anterior shoulder instability. Clin Orthop Relat Res. 1991;(272):152–61.Google Scholar
  81. 81.
    Kronberg M, Brostrom LA. Humeral head retroversion in patients with unstable humeroscapular joints. Clin Orthop Relat Res. 1990;(260):207–11.Google Scholar
  82. 82.
    Churchill RS, Brems JJ, Kotschi H. Glenoid size, inclination, and version: an anatomic study. J Shoulder Elbow Surg. 2001;10:327–32.PubMedCrossRefGoogle Scholar
  83. 83.
    Merrill A, Guzman K, Miller SL. Gender differences in glenoid anatomy: an anatomic study. Surg Radiol Anat. 2009;31:183–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Arkkila PE, Kantola IM, Viikari JS, Ronnemaa T. Shoulder capsulitis in type I and II diabetic patients: association with diabetic complications and related diseases. Ann Rheum Dis. 1996;55:907–14.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Omari A, Bunker TD. Open surgical release for frozen shoulder: surgical findings and results of the release. J Shoulder Elbow Surg. 2001;10:353–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Mengiardi B, Pfirrmann CW, Gerber C, Hodler J, Zanetti M. Frozen shoulder: MR arthrographic findings. Radiology. 2004;233:486–92.PubMedCrossRefGoogle Scholar
  87. 87.
    Hutchinson JW, Tierney GM, Parsons SL, Davis TR. Dupuytren's disease and frozen shoulder induced by treatment with a matrix metalloproteinase inhibitor. J Bone Joint Surg Br. 1998;80:907–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Nirschl RP. Tennis elbow tendinosis: pathoanatomy, nonsurgical and surgical management. In: Gordon SLBSJFLJ, editor. Repetitive motion disorders of the upper extremity. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1995. p. 467–78.Google Scholar
  89. 89.
    Svernlov B, Adolfsson L. Non-operative treatment regime including eccentric training for lateral humeral epicondylalgia. Scand J Med Sci Sports. 2001;11:328–34.PubMedCrossRefGoogle Scholar
  90. 90.
    Winkel D, Matthijs O, Phelps V. Part 2: The knee. Diagnosis and treatment of the lower extremities. Gaithersburg, MD: Aspen Publishers, Inc.; 1997Google Scholar
  91. 91.
    Solveborn SA. Radial epicondylalgia (‘tennis elbow’): treatment with stretching or forearm band. A prospective study with long-term follow-up including range-of-motion measurements. Scand J Med Sci Sports. 1997;7:229–37.PubMedCrossRefGoogle Scholar
  92. 92.
    Ljung BO, Lieber RL, Friden J. Wrist extensor muscle pathology in lateral epicondylitis. J Hand Surg [Br]. 1999;24:177–83.CrossRefGoogle Scholar
  93. 93.
    Alfredson H, Ljung BO, Thorsen K, Lorentzon R. In vivo investigation of ECRB tendons with microdialysis technique—no signs of inflammation but high amounts of glutamate in tennis elbow. Acta Orthop Scand. 2000;71:475–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Richardson JK, Green DF, Jamieson SC, Valentin FC. Gender, body mass and age as risk factors for ulnar mononeuropathy at the elbow. Muscle Nerve. 2001;24:551–4.PubMedCrossRefGoogle Scholar
  95. 95.
    Tanaka S, Petersen M, Cameron L. Prevalence and risk factors of tendinitis and related disorders of the distal upper extremity among U.S. workers: comparison to carpal tunnel syndrome. Am J Ind Med. 2001;39:328–35.PubMedCrossRefGoogle Scholar
  96. 96.
    Moghtaderi A, Izadi S, Sharafadinzadeh N. An evaluation of gender, body mass index, wrist circumference and wrist ratio as independent risk factors for carpal tunnel syndrome. Acta Neurol Scand. 2005;112:375–9.PubMedCrossRefGoogle Scholar
  97. 97.
    McDiarmid M, Oliver M, Ruser J, Gucer P. Male and female rate differences in carpal tunnel syndrome injuries: personal attributes or job tasks? Environ Res. 2000;83:23–32.PubMedCrossRefGoogle Scholar
  98. 98.
    Mondelli M, Aprile I, Ballerini M, et al. Sex differences in carpal tunnel syndrome: comparison of surgical and non-surgical populations. Eur J Neurol. 2005;12:976–83.PubMedCrossRefGoogle Scholar
  99. 99.
    Pierre-Jerome C, Bekkelund SI, Nordstrom R. Quantitative MRI analysis of anatomic dimensions of the carpal tunnel in women. Surg Radiol Anat. 1997;19:31–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Siegel DB, Kuzma G, Eakins D. Anatomic investigation of the role of the lumbrical muscles in carpal tunnel syndrome. J Hand Surg [Am]. 1995;20:860–3.CrossRefGoogle Scholar
  101. 101.
    Richards RS, Bennett JD. Abnormalities of the hook of the hamate in patients with carpal tunnel syndrome. Ann Plast Surg. 1997;39:44–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Boz C, Ozmenoglu M, Altunayoglu V, Velioglu S, Alioglu Z. Individual risk factors for carpal tunnel syndrome: an evaluation of body mass index, wrist index and hand anthropometric measurements. Clin Neurol Neurosurg. 2004;106:294–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Massy-Westropp N, Grimmer K, Bain G. The effect of a standard activity on the size of the median nerve as determined by ultrasound visualization. J Hand Surg [Am]. 2001;26:649–54.CrossRefGoogle Scholar
  104. 104.
    Crisco JJ, Coburn JC, Moore DC, Upal MA. Carpal bone size and scaling in men versus in women. J Hand Surg [Am]. 2005;30:35–42.CrossRefGoogle Scholar
  105. 105.
    Hamanaka I, Okutsu I, Shimizu K, Takatori Y, Ninomiya S. Evaluation of carpal canal pressure in carpal tunnel syndrome. J Hand Surg [Am]. 1995;20:848–54.CrossRefGoogle Scholar
  106. 106.
    Ham SJ, Kolkman WF, Heeres J, den Boer JA. Changes in the carpal tunnel due to action of the flexor tendons: visualization with magnetic resonance imaging. J Hand Surg [Am]. 1996;21:997–1003.CrossRefGoogle Scholar
  107. 107.
    Rempel D, Keir PJ, Smutz WP, Hargens A. Effects of static fingertip loading on carpal tunnel pressure. J Orthop Res. 1997;15:422–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Chen WS. Median-nerve neuropathy associated with chronic anterior dislocation of the lunate. J Bone Joint Surg Am. 1995;77:1853–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Seradge H, Jia YC, Owens W. In vivo measurement of carpal tunnel pressure in the functioning hand. J Hand Surg [Am]. 1995;20:855–9.CrossRefGoogle Scholar
  110. 110.
    Gelberman RH, Hergenroeder PT, Hargens AR, Lundborg GN, Akeson WH. The carpal tunnel syndrome. A study of carpal canal pressures. J Bone Joint Surg Am. 1981;63:380–3.PubMedCrossRefGoogle Scholar
  111. 111.
    Buschbacher RM. Mixed nerve conduction studies of the median and ulnar nerves. Am J Phys Med Rehabil. 1999;78:S69–74.PubMedCrossRefGoogle Scholar
  112. 112.
    Vennix MJ, Hirsh DD, Chiou-Tan FY, Rossi CD. Predicting acute denervation in carpal tunnel syndrome. Arch Phys Med Rehabil. 1998;79:306–12.PubMedCrossRefGoogle Scholar
  113. 113.
    Tetro AM, Evanoff BA, Hollstien SB, Gelberman RH. A new provocative test for carpal tunnel syndrome. Assessment of wrist flexion and nerve compression. J Bone Joint Surg Br. 1998;80:493–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Vogt T. Median-ulnar motor latency difference in the diagnosis of CTS. Zeitschr Elektroenzephalogr Diagn verwandte Gebiete. 1995;26:141–5.Google Scholar
  115. 115.
    Glowacki KA, Breen CJ, Sachar K, Weiss AP. Electrodiagnostic testing and carpal tunnel release outcome. J Hand Surg [Am]. 1996;21:117–21.CrossRefGoogle Scholar
  116. 116.
    Padula L. A useful electrophysiologic parameter for diagnosis of CTS. Muscle Nerve. 1995;19:48–53.CrossRefGoogle Scholar
  117. 117.
    Verghese J, Galanopoulou AS, Herskovitz S. Autonomic dysfunction in idiopathic carpal tunnel syndrome. Muscle Nerve. 2000;23:1209–13.PubMedCrossRefGoogle Scholar
  118. 118.
    Golovchinsky V. Frequency of ulnar-to-median nerve anastomosis revisited. Electromyogr Clin Neurophysiol. 1995;35:67–8.PubMedGoogle Scholar
  119. 119.
    Szabo RM, Gelberman RH. The pathophysiology of nerve entrapment syndromes. J Hand Surg [Am]. 1987;12:880–4.CrossRefGoogle Scholar
  120. 120.
    Kiuru MJ, Pihlajamaki HK, Ahovuo JA. Fatigue stress injuries of the pelvic bones and proximal femur: evaluation with MR imaging. Eur Radiol. 2003;13:605–11.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Seeman E. The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am. 2003;32:25–38.PubMedCrossRefGoogle Scholar
  122. 122.
    Genser-Strobl B, Sora MC. Potential of P40 plastination for morphometric hip measurements. Surg Radiol Anat. 2005;27:147–51.PubMedCrossRefGoogle Scholar
  123. 123.
    Wang SC, Brede C, Lange D, et al. Gender differences in hip anatomy: possible implications for injury tolerance in frontal collisions. Annu Proc Assoc Adv Automot Med. 2004;48:287–301.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Igbigbi PS. Collo-diaphysial angle of the femur in East African subjects. Clin Anat. 2003;16:416–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Beck TJ, Ruff CB, Scott Jr WW, Plato CC, Tobin JD, Quan CA. Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data. Calcif Tissue Int. 1992;50:24–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Crabtree N, Lunt M, Holt G, et al. Hip geometry, bone mineral distribution, and bone strength in European men and women: the EPOS study. Bone. 2000;27:151–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Korpelainen R, Orava S, Karpakka J, Siira P, Hulkko A. Risk factors for recurrent stress fractures in athletes. Am J Sports Med. 2001;29:304–10.PubMedCrossRefGoogle Scholar
  128. 128.
    Curtin BM, Fehring TK. Bisphosphonate fractures as a cause of painful total hip arthroplasty. Orthopedics. 2011;34:e939–44.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Lo JC, Huang SY, Lee GA, et al. Clinical correlates of atypical femoral fracture. Bone. 2012;51:181–4.PubMedCrossRefGoogle Scholar
  130. 130.
    Yoon RS, Hwang JS, Beebe KS. Long-term bisphosphonate usage and subtrochanteric insufficiency fractures: a cause for concern? J Bone Joint Surg Br. 2011;93:1289–95.PubMedCrossRefGoogle Scholar
  131. 131.
    Schilcher J, Michaelsson K, Aspenberg P. Bisphosphonate use and atypical fractures of the femoral shaft. N Engl J Med. 2011;364:1728–37.PubMedCrossRefGoogle Scholar
  132. 132.
    Horii M, Kubo T, Inoue S, Kim WC. Coverage of the femoral head by the acetabular labrum in dysplastic hips: quantitative analysis with radial MR imaging. Acta Orthop Scand. 2003;74:287–92.PubMedCrossRefGoogle Scholar
  133. 133.
    Seldes RM, Tan V, Hunt J, Katz M, Winiarsky R, Fitzgerald RH, Jr. Anatomy, histologic features, and vascularity of the adult acetabular labrum. Clin Orthop Relat Res. 2001;(382):232–40.CrossRefGoogle Scholar
  134. 134.
    Ferguson SJ, Bryant JT, Ganz R, Ito K. An in vitro investigation of the acetabular labral seal in hip joint mechanics. J Biomech. 2003;36:171–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Narvani AA, Tsiridis E, Tai CC, Thomas P. Acetabular labrum and its tears. Br J Sports Med. 2003;37:207–11.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kelly BT, Shapiro GS, Digiovanni CW, Buly RL, Potter HG, Hannafin JA. Vascularity of the hip labrum: a cadaveric investigation. Arthroscopy. 2005;21:3–11.PubMedCrossRefGoogle Scholar
  137. 137.
    Stiris MG. Magnetic resonance arthrography of the hip joint in patients with suspected rupture of labrum acetabulare. Tidsskr Nor Laegeforen. 2001;121:698–700.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Ishiko T, Naito M, Moriyama S. Tensile properties of the human acetabular labrum-the first report. J Orthop Res. 2005;23:1448–53.PubMedCrossRefGoogle Scholar
  139. 139.
    McCarthy JC, Lee JA. Acetabular dysplasia: a paradigm of arthroscopic examination of chondral injuries. Clin Orthop Relat Res. 2002;(405):122–8.CrossRefGoogle Scholar
  140. 140.
    Leunig M, Sledge JB, Gill TJ, Ganz R. Traumatic labral avulsion from the stable rim: a constant pathology in displaced transverse acetabular fractures. Arch Orthop Trauma Surg. 2003;123:392–5.PubMedCrossRefGoogle Scholar
  141. 141.
    Mintz DN, Hooper T, Connell D, Buly R, Padgett DE, Potter HG. Magnetic resonance imaging of the hip: detection of labral and chondral abnormalities using noncontrast imaging. Arthroscopy. 2005;21:385–93.PubMedCrossRefGoogle Scholar
  142. 142.
    Ito K, Minka MA, Leunig M, Werlen S, Ganz R. Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. J Bone Joint Surg Br. 2001;83:171–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Kappe T, Kocak T, Bieger R, Reichel H, Fraitzl CR. Radiographic risk factors for labral lesions in femoroacetabular impingement. Clin Orthop Relat Res. 2011;469:3241–7.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Mosher TJ, Collins CM, Smith HE, et al. Effect of gender on in vivo cartilage magnetic resonance imaging T2 mapping. J Magn Reson Imaging. 2004;19:323–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Csintalan RP, Schulz MM, Woo J, McMahon PJ, Lee TQ. Gender differences in patellofemoral joint biomechanics. Clin Orthop Relat Res. 2002;(402):260–9.CrossRefGoogle Scholar
  146. 146.
    Besier TF, Draper CE, Gold GE, Beaupre GS, Delp SL. Patellofemoral joint contact area increases with knee flexion and weight-bearing. J Orthop Res. 2005;23:345–50.PubMedCrossRefGoogle Scholar
  147. 147.
    Souza RB, Powers CM. Predictors of hip internal rotation during running: an evaluation of hip strength and femoral structure in women with and without patellofemoral pain. Am J Sports Med. 2009;37:579–87.PubMedCrossRefGoogle Scholar
  148. 148.
    Cowan SM, Crossley KM. Does gender influence neuromotor control of the knee and hip? J Electromyogr Kinesiol. 2009;19:276–82.PubMedCrossRefGoogle Scholar
  149. 149.
    Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med. 1995;23:694–701.PubMedCrossRefGoogle Scholar
  150. 150.
    Fayad LM, Parellada JA, Parker L, Schweitzer ME. MR imaging of anterior cruciate ligament tears: is there a gender gap? Skeletal Radiol. 2003;32:639–46.PubMedCrossRefGoogle Scholar
  151. 151.
    Boden BP, Dean GS, Feagin Jr JA, Garrett Jr WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23:573–8.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Rozzi SL, Lephart SM, Gear WS, Fu FH. Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med. 1999;27:312–9.PubMedCrossRefGoogle Scholar
  153. 153.
    Muneta T, Takakuda K, Yamamoto H. Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. A cadaveric knee study. Am J Sports Med. 1997;25:69–72.PubMedCrossRefGoogle Scholar
  154. 154.
    Charlton WP, St John TA, Ciccotti MG, Harrison N, Schweitzer M. Differences in femoral notch anatomy between men and women: a magnetic resonance imaging study. Am J Sports Med. 2002;30:329–33.PubMedCrossRefGoogle Scholar
  155. 155.
    Sbriccoli P, Solomonow M, Zhou BH, Lu Y, Sellards R. Neuromuscular response to cyclic loading of the anterior cruciate ligament. Am J Sports Med. 2005;33:543–51.PubMedCrossRefGoogle Scholar
  156. 156.
    Murshed KA, Cicekcibasi AE, Karabacakoglu A, Seker M, Ziylan T. Distal femur morphometry: a gender and bilateral comparative study using magnetic resonance imaging. Surg Radiol Anat. 2005;27:108–12.PubMedCrossRefGoogle Scholar
  157. 157.
    van Eck CF, Martins CA, Vyas SM, Celentano U, van Dijk CN, Fu FH. Femoral intercondylar notch shape and dimensions in ACL-injured patients. Knee Surg Sports Traumatol Arthrosc. 2010;18:1257–62.PubMedCrossRefGoogle Scholar
  158. 158.
    Hoshino Y, Wang JH, Lorenz S, Fu FH, Tashman S. Gender difference of the femoral kinematics axis location and its relation to anterior cruciate ligament injury: a 3D-CT study. Knee Surg Sports Traumatol Arthrosc. 2012;20:1282–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Lipps DB, Oh YK, Ashton-Miller JA, Wojtys EM. Morphologic characteristics help explain the gender difference in peak anterior cruciate ligament strain during a simulated pivot landing. Am J Sports Med. 2012;40:32–40.PubMedCrossRefGoogle Scholar
  160. 160.
    Hohmann E, Bryant A, Reaburn P, Tetsworth K. Is there a correlation between posterior tibial slope and non-contact anterior cruciate ligament injuries? Knee Surg Sports Traumatol Arthrosc. 2011;19 Suppl 1:S109–14.PubMedCrossRefGoogle Scholar
  161. 161.
    Loudon JK, Jenkins W, Loudon KL. The relationship between static posture and ACL injury in female athletes. J Orthop Sports Phys Ther. 1996;24:91–7.PubMedCrossRefGoogle Scholar
  162. 162.
    Livingston LA, Mandigo JL. Bilateral Q angle asymmetry and anterior knee pain syndrome. Clin Biomech (Bristol, Avon). 1999;14:7–13.CrossRefGoogle Scholar
  163. 163.
    Stuberg W, Temme J, Kaplan P, Clarke A, Fuchs R. Measurement of tibial torsion and thigh-foot angle using goniometry and computed tomography. Clin Orthop Relat Res. 1991;(272):208–12.Google Scholar
  164. 164.
    Trimble MH, Bishop MD, Buckley BD, Fields LC, Rozea GD. The relationship between clinical measurements of lower extremity posture and tibial translation. Clin Biomech (Bristol Avon). 2002;17:286–90.CrossRefGoogle Scholar
  165. 165.
    McNair PJ, Marshall RN. Landing characteristics in subjects with normal and anterior cruciate ligament deficient knee joints. Arch Phys Med Rehabil. 1994;75:584–9.PubMedPubMedCentralGoogle Scholar
  166. 166.
    McLean SG, Lipfert SW, van den Bogert AJ. Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Med Sci Sports Exerc. 2004;36:1008–16.PubMedCrossRefGoogle Scholar
  167. 167.
    Kernozek TW, Torry MR, Van Hoof H, Cowley H, Tanner S. Gender differences in frontal and sagittal plane biomechanics during drop landings. Med Sci Sports Exerc. 2005;37:1003–12.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Pollard CD, Davis IM, Hamill J. Influence of gender on hip and knee mechanics during a randomly cued cutting maneuver. Clin Biomech (Bristol, Avon). 2004;19:1022–31.CrossRefGoogle Scholar
  169. 169.
    Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med. 1999;27:699–706.PubMedCrossRefGoogle Scholar
  170. 170.
    Ford KR, Myer GD, Toms HE, Hewett TE. Gender differences in the kinematics of unanticipated cutting in young athletes. Med Sci Sports Exerc. 2005;37:124–9.PubMedCrossRefGoogle Scholar
  171. 171.
    Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996;24:765–73.PubMedCrossRefGoogle Scholar
  172. 172.
    Barber-Westin SD, Noyes FR, Galloway M. Jump-land characteristics and muscle strength development in young athletes: a gender comparison of 1140 athletes 9 to 17 years of age. Am J Sports Med. 2006;34:375–84.CrossRefPubMedGoogle Scholar
  173. 173.
    Ford KR, Myer GD, Smith RL, Vianello RM, Seiwert SL, Hewett TE. A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings. Clin Biomech (Bristol, Avon). 2006;21:33–40.CrossRefGoogle Scholar
  174. 174.
    Joseph MF, Rahl M, Sheehan J, et al. Timing of lower extremity frontal plane motion differs between female and male athletes during a landing task. Am J Sports Med. 2011;39:1517–21.PubMedCrossRefGoogle Scholar
  175. 175.
    Ramesh R, Von Arx O, Azzopardi T, Schranz PJ. The risk of anterior cruciate ligament rupture with generalised joint laxity. J Bone Joint Surg Br. 2005;87:800–3.PubMedCrossRefGoogle Scholar
  176. 176.
    Hollman JH, Deusinger RH, Van Dillen LR, Matava MJ. Gender differences in surface rolling and gliding kinematics of the knee. Clin Orthop Relat Res. 2003;(413):208–21.CrossRefGoogle Scholar
  177. 177.
    Wojtys EM, Ashton-Miller JA, Huston LJ. A gender-related difference in the contribution of the knee musculature to sagittal-plane shear stiffness in subjects with similar knee laxity. J Bone Joint Surg Am. 2002;84-A:10–6.PubMedCrossRefGoogle Scholar
  178. 178.
    Beckett ME, Massie DL, Bowers KD, Stoll DA. Incidence of hyperpronation in the ACL injured knee: a clinical perspective. J Athl Train. 1992;27:58–62.PubMedPubMedCentralGoogle Scholar
  179. 179.
    Chappell JD, Yu B, Kirkendall DT, Garrett WE. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am J Sports Med. 2002;30:261–7.PubMedCrossRefGoogle Scholar
  180. 180.
    Sigward SM, Powers CM. The influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting. Clin Biomech (Bristol, Avon). 2006;21:41–8.CrossRefGoogle Scholar
  181. 181.
    McLean SG, Huang X, van den Bogert AJ. Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clin Biomech (Bristol, Avon). 2005;20:863–70.CrossRefGoogle Scholar
  182. 182.
    Granata KP, Padua DA, Wilson SE. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. J Electromyogr Kinesiol. 2002;12:127–35.PubMedCrossRefGoogle Scholar
  183. 183.
    Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard SJ. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech (Bristol, Avon). 2003;18:662–9.CrossRefGoogle Scholar
  184. 184.
    Besier TF, Lloyd DG, Ackland TR. Muscle activation strategies at the knee during running and cutting maneuvers. Med Sci Sports Exerc. 2003;35:119–27.PubMedCrossRefGoogle Scholar
  185. 185.
    Fagenbaum R, Darling WG. Jump landing strategies in male and female college athletes and the implications of such strategies for anterior cruciate ligament injury. Am J Sports Med. 2003;31:233–40.PubMedCrossRefGoogle Scholar
  186. 186.
    Ahmad CS, Clark AM, Heilmann N, Schoeb JS, Gardner TR, Levine WN. Effect of gender and maturity on quadriceps-to-hamstring strength ratio and anterior cruciate ligament laxity. Am J Sports Med. 2006;34:370–4.CrossRefPubMedGoogle Scholar
  187. 187.
    da Fonseca ST, Vaz DV, de Aquino CF, Bricio RS. Muscular co-contraction during walking and landing from a jump: comparison between genders and influence of activity level. J Electromyogr Kinesiol. 2006;16:273–80.PubMedCrossRefGoogle Scholar
  188. 188.
    Padua DA, Carcia CR, Arnold BL, Granata KP. Gender differences in leg stiffness and stiffness recruitment strategy during two-legged hopping. J Mot Behav. 2005;37:111–25.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Hurd WJ, Chmielewski TL, Snyder-Mackler L. Perturbation-enhanced neuromuscular training alters muscle activity in female athletes. Knee Surg Sports Traumatol Arthrosc. 2006;14:60–9.PubMedCrossRefGoogle Scholar
  190. 190.
    Myer GD, Ford KR, Hewett TE. The effects of gender on quadriceps muscle activation strategies during a maneuver that mimics a high ACL injury risk position. J Electromyogr Kinesiol. 2005;15:181–9.PubMedCrossRefGoogle Scholar
  191. 191.
    Ebben WP, Fauth ML, Petushek EJ, et al. Gender-based analysis of hamstring and quadriceps muscle activation during jump landings and cutting. J Strength Cond Res. 2010;24:408–15.PubMedCrossRefGoogle Scholar
  192. 192.
    Wojtys EM, Huston LJ, Schock HJ, Boylan JP, Ashton-Miller JA. Gender differences in muscular protection of the knee in torsion in size-matched athletes. J Bone Joint Surg Am. 2003;85-A:782–9.PubMedCrossRefGoogle Scholar
  193. 193.
    Stern A, Kuenze C, Herman D, Sauer LD, Hart JM. A gender comparison of central and peripheral neuromuscular function after exercise. J Sport Rehabil. 2011;21(3):209–17.PubMedCrossRefGoogle Scholar
  194. 194.
    Chu D, LeBlanc R, D’Ambrosia P, D’Ambrosia R, Baratta RV, Solomonow M. Neuromuscular disorder in response to anterior cruciate ligament creep. Clin Biomech Bristol, Avon. 2003;18:222–30.PubMedCrossRefGoogle Scholar
  195. 195.
    Slauterbeck JR, Fuzie SF, Smith MP, et al. The menstrual cycle, sex hormones, and anterior cruciate ligament injury. J Athl Train. 2002;37:275–8.PubMedPubMedCentralGoogle Scholar
  196. 196.
    Liu SH, al Shaikh R, Panossian V, et al. Primary immunolocalization of estrogen and progesterone target cells in the human anterior cruciate ligament. J Orthop Res. 1996;14:526–33.PubMedCrossRefGoogle Scholar
  197. 197.
    Slauterbeck JR, Hardy DM. Sex hormones and knee ligament injuries in female athletes. Am J Med Sci. 2001;322:196–9.PubMedCrossRefGoogle Scholar
  198. 198.
    Bell DR, Blackburn JT, Norcorss MF, et al. Estrogen and muscle stiffness have a negative relationship in females. Knee Surg Sports Traumatol Arthrosc. 2012;20:361–7.PubMedCrossRefGoogle Scholar
  199. 199.
    Deie M, Sakamaki Y, Sumen Y, Urabe Y, Ikuta Y. Anterior knee laxity in young women varies with their menstrual cycle. Int Orthop. 2002;26:154–6.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Heir T. Musculoskeletal injuries in officer training: one-year follow-up. Mil Med. 1998;163:229–33.PubMedCrossRefGoogle Scholar
  201. 201.
    Knobloch K, Schreibmueller L, Kraemer R, Jagodzinski M, Vogt PM, Redeker J. Gender and eccentric training in Achilles mid-portion tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2010;18:648–55.PubMedCrossRefGoogle Scholar
  202. 202.
    Wunderlich RE, Cavanagh PR. Gender differences in adult foot shape: implications for shoe design. Med Sci Sports Exerc. 2001;33:605–11.PubMedCrossRefGoogle Scholar
  203. 203.
    Gilmour JC, Burns Y. The measurement of the medial longitudinal arch in children. Foot Ankle Int. 2001;22:493–8.PubMedCrossRefGoogle Scholar
  204. 204.
    Michelson JD, Durant DM, McFarland E. The injury risk associated with pes planus in athletes. Foot Ankle Int. 2002;23:629–33.PubMedCrossRefGoogle Scholar
  205. 205.
    Hosea TM, Carey CC, Harrer MF. The gender issue: epidemiology of ankle injuries in athletes who participate in basketball. Clin Orthop Relat Res. 2000;(372):45–9.CrossRefGoogle Scholar
  206. 206.
    Beynnon BD, Renstrom PA, Alosa DM, Baumhauer JF, Vacek PM. Ankle ligament injury risk factors: a prospective study of college athletes. J Orthop Res. 2001;19:213–20.PubMedCrossRefGoogle Scholar
  207. 207.
    Wilson EL, Madigan ML. Effects of fatigue and gender on peroneal reflexes elicited by sudden ankle inversion. J Electromyogr Kinesiol. 2007;17:160–6.PubMedCrossRefGoogle Scholar
  208. 208.
    Sugimoto K, Takakura Y, Tohno Y, Kumai T, Kawate K, Kadono K. Cartilage thickness of the talar dome. Arthroscopy. 2005;21:401–4.PubMedCrossRefGoogle Scholar
  209. 209.
    Hyer CF, Philbin TM, Berlet GC, Lee TH. The obliquity of the first metatarsal base. Foot Ankle Int. 2004;25:728–32.PubMedCrossRefGoogle Scholar
  210. 210.
    Hart DA, Kydd A, Reno C. Gender and pregnancy affect neuropeptide responses of the rabbit Achilles tendon. Clin Orthop Relat Res. 1999;(365):237-246.CrossRefGoogle Scholar
  211. 211.
    Wang YT, Pascoe DD, Kim CK, Xu D. Force patterns of heel strike and toe off on different heel heights in normal walking. Foot Ankle Int. 2001;22:486–92.PubMedCrossRefGoogle Scholar
  212. 212.
    Haims AH, Schweitzer ME, Patel RS, Hecht P, Wapner KL. MR imaging of the Achilles tendon: overlap of findings in symptomatic and asymptomatic individuals. Skeletal Radiol. 2000;29:640–5.PubMedCrossRefGoogle Scholar
  213. 213.
    Muraoka T, Muramatsu T, Fukunaga T, Kanehisa H. Elastic properties of human Achilles tendon are correlated to muscle strength. J Appl Physiol. 2005;99:665–9.PubMedCrossRefGoogle Scholar
  214. 214.
    Rezcallah AT, Xu R, Ebraheim NA, Jackson T. Axial computed tomography of the pedicle in the lower cervical spine. Am J Orthop. 2001;30:59–61.PubMedGoogle Scholar
  215. 215.
    Xu R, Burgar A, Ebraheim NA, Yeasting RA. The quantitative anatomy of the laminas of the spine. Spine. 1999;24:107–13.PubMedCrossRefGoogle Scholar
  216. 216.
    Lim JK, Wong HK. Variation of the cervical spinal Torg ratio with gender and ethnicity. Spine J. 2004;4:396–401.PubMedCrossRefGoogle Scholar
  217. 217.
    Hukuda S, Kojima Y. Sex discrepancy in the canal/body ratio of the cervical spine implicating the prevalence of cervical myelopathy in men. Spine. 2002;27:250–3.PubMedCrossRefGoogle Scholar
  218. 218.
    Pettersson K, Karrholm J, Toolanen G, Hildingsson C. Decreased width of the spinal canal in patients with chronic symptoms after whiplash injury. Spine. 1995;20:1664–7.PubMedCrossRefGoogle Scholar
  219. 219.
    Versteegen GJ, Kingma J, Meijler WJ, ten Duis HJ. Neck sprain after motor vehicle accidents in drivers and passengers. Eur Spine J. 2000;9:547–52.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Suissa S. Risk factors of poor prognosis after whiplash injury. Pain Res Manag. 2003;8:69–75.PubMedCrossRefGoogle Scholar
  221. 221.
    Hendriks EJ, Scholten-Peeters GG, van der Windt DA, Neeleman-van der Steen CW, Oostendorp RA, Verhagen AP. Prognostic factors for poor recovery in acute whiplash patients. Pain. 2005;114:408–16.PubMedCrossRefGoogle Scholar
  222. 222.
    Siegmund GP, Sanderson DJ, Myers BS, Inglis JT. Awareness affects the response of human subjects exposed to a single whiplash-like perturbation. Spine. 2003;28:671–9.PubMedPubMedCentralGoogle Scholar
  223. 223.
    Yoganandan N, Knowles SA, Maiman DJ, Pintar FA. Anatomic study of the morphology of human cervical facet joint. Spine. 2003;28:2317–23.PubMedCrossRefGoogle Scholar
  224. 224.
    Stemper BD, Yoganandan N, Pintar FA. Gender- and region-dependent local facet joint kinematics in rear impact: implications in whiplash injury. Spine. 2004;29:1764–71.PubMedCrossRefGoogle Scholar
  225. 225.
    Truumees E, Demetropoulos CK, Yang KH, Herkowitz HN. Failure of human cervical endplates: a cadaveric experimental model. Spine. 2003;28:2204–8.PubMedCrossRefGoogle Scholar
  226. 226.
    Ryan SD, Fried LP. The impact of kyphosis on daily functioning. J Am Geriatr Soc. 1997;45:1479–86.PubMedCrossRefGoogle Scholar
  227. 227.
    Fon GT, Pitt MJ, Thies Jr AC. Thoracic kyphosis: range in normal subjects. AJR Am J Roentgenol. 1980;134:979–83.PubMedCrossRefGoogle Scholar
  228. 228.
    Widhe T. Spine: posture, mobility and pain. A longitudinal study from childhood to adolescence. Eur Spine J. 2001;10:118–23.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Chiu YL, Huang TJ, Hsu RW. Curve patterns and etiologies of scoliosis: analysis in a university hospital clinic in Taiwan. Changgeng Yi Xue Za Zhi. 1998;21:421–8.PubMedPubMedCentralGoogle Scholar
  230. 230.
    Payne III WK, Ogilvie JW, Resnick MD, Kane RL, Transfeldt EE, Blum RW. Does scoliosis have a psychological impact and does gender make a difference? Spine. 1997;22:1380–4.PubMedCrossRefGoogle Scholar
  231. 231.
    Soucacos PN, Zacharis K, Soultanis K, Gelalis J, Xenakis T, Beris AE. Risk factors for idiopathic scoliosis: review of a 6-year prospective study. Orthopedics. 2000;23:833–8.PubMedGoogle Scholar
  232. 232.
    Axenovich TI, Zaidman AM, Zorkoltseva IV, Tregubova IL, Borodin PM. Segregation analysis of idiopathic scoliosis: demonstration of a major gene effect. Am J Med Genet. 1999;86:389–94.PubMedCrossRefGoogle Scholar
  233. 233.
    Loncar-Dusek M, Pecina M, Prebeg Z. A longitudinal study of growth velocity and development of secondary gender characteristics versus onset of idiopathic scoliosis. Clin Orthop Relat Res. 1991;(270):278–2.Google Scholar
  234. 234.
    Ramirez N, Johnston CE, Browne RH. The prevalence of back pain in children who have idiopathic scoliosis. J Bone Joint Surg Am. 1997;79:364–8.PubMedCrossRefGoogle Scholar
  235. 235.
    Ugwonali OF, Lomas G, Choe JC, et al. Effect of bracing on the quality of life of adolescents with idiopathic scoliosis. Spine J. 2004;4:254–60.PubMedCrossRefGoogle Scholar
  236. 236.
    Bunge EM, Juttmann RE, de Kleuver M, van Biezen FC, de Koning HJ. Health-related quality of life in patients with adolescent idiopathic scoliosis after treatment: short-term effects after brace or surgical treatment. Eur Spine J. 2006;16(1):83–9.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Cheng WC, Yang RS, Huey-Jen HS, Chieng PU, Tsai KS. Effects of gender and age differences on the distribution of bone content in the third lumbar vertebra. Spine. 2001;26:964–8.PubMedCrossRefGoogle Scholar
  238. 238.
    Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L. Age- and gender-related differences in vertebral bone mass, density, and strength. J Bone Miner Res. 1999;14:1394–403.PubMedCrossRefGoogle Scholar
  239. 239.
    Gilsanz V, Boechat MI, Gilsanz R, Loro ML, Roe TF, Goodman WG. Gender differences in vertebral sizes in adults: biomechanical implications. Radiology. 1994;190:678–82.PubMedCrossRefGoogle Scholar
  240. 240.
    Gilsanz V, Boechat MI, Roe TF, Loro ML, Sayre JW, Goodman WG. Gender differences in vertebral body sizes in children and adolescents. Radiology. 1994;190:673–7.PubMedCrossRefGoogle Scholar
  241. 241.
    Naganathan V, Sambrook P. Gender differences in volumetric bone density: a study of opposite-sex twins. Osteoporos Int. 2003;14:564–9.PubMedCrossRefGoogle Scholar
  242. 242.
    Korovessis P, Koureas G, Papazisis Z. Correlation between backpack weight and way of carrying, sagittal and frontal spinal curvatures, athletic activity, and dorsal and low back pain in schoolchildren and adolescents. J Spinal Disord Tech. 2004;17:33–40.PubMedCrossRefGoogle Scholar
  243. 243.
    Gruber HE, Norton HJ, Leslie K, Hanley Jr EN. Clinical and demographic prognostic indicators for human disc cell proliferation in vitro: pilot study. Spine. 2001;26:2323–7.PubMedCrossRefGoogle Scholar
  244. 244.
    Iguchi T, Wakami T, Kurihara A, Kasahara K, Yoshiya S, Nishida K. Lumbar multilevel degenerative spondylolisthesis: radiological evaluation and factors related to anterolisthesis and retrolisthesis. J Spinal Disord Tech. 2002;15:93–9.PubMedCrossRefGoogle Scholar
  245. 245.
    Masharawi Y, Rothschild B, Salame K, Dar G, Peleg S, Hershkovitz I. Facet tropism and interfacet shape in the thoracolumbar vertebrae: characterization and biomechanical interpretation. Spine. 2005;30:E281–92.PubMedCrossRefGoogle Scholar
  246. 246.
    Norton BJ, Sahrmann SA, Van Dillen FL. Differences in measurements of lumbar curvature related to gender and low back pain. J Orthop Sports Phys Ther. 2004;34:524–34.PubMedCrossRefGoogle Scholar
  247. 247.
    O’Sullivan P, Dankaerts W, Burnett A, et al. Lumbopelvic kinematics and trunk muscle activity during sitting on stable and unstable surfaces. J Orthop Sports Phys Ther. 2006;36:19–25.PubMedCrossRefGoogle Scholar
  248. 248.
    Marras WS, Jorgensen MJ, Granata KP, Wiand B. Female and male trunk geometry: size and prediction of the spine loading trunk muscles derived from MRI. Clin Biomech (Bristol, Avon). 2001;16:38–46.CrossRefGoogle Scholar
  249. 249.
    Ng JK, Richardson CA, Kippers V, Parnianpour M. Relationship between muscle fiber composition and functional capacity of back muscles in healthy subjects and patients with back pain. J Orthop Sports Phys Ther. 1998;27:389–402.PubMedCrossRefGoogle Scholar
  250. 250.
    Marras WS, Davis KG, Jorgensen M. Spine loading as a function of gender. Spine. 2002;27:2514–20.PubMedCrossRefGoogle Scholar
  251. 251.
    Granata KP, Orishimo KF. Response of trunk muscle coactivation to changes in spinal stability. J Biomech. 2001;34:1117–23.PubMedCrossRefGoogle Scholar
  252. 252.
    Granata KP, Rogers E, Moorhouse K. Effects of static flexion-relaxation on paraspinal reflex behavior. Clin Biomech (Bristol, Avon). 2005;20:16–24.CrossRefGoogle Scholar
  253. 253.
    Brown MD, Holmes DC, Heiner AD, Wehman KF. Intraoperative measurement of lumbar spine motion segment stiffness. Spine. 2002;27:954–8.PubMedCrossRefGoogle Scholar
  254. 254.
    Cook C, Brismee JM, Sizer Jr PS. Subjective and objective descriptors of clinical lumbar spine instability: a Delphi study. Man Ther. 2006;11:11–21.PubMedCrossRefGoogle Scholar
  255. 255.
    Bowen V, Cassidy JD. Macroscopic and microscopic anatomy of the sacroiliac joint from embryonic life until the eighth decade. Spine. 1981;6:620–8.PubMedCrossRefGoogle Scholar
  256. 256.
    Lin WY, Wang SJ. Influence of age and gender on quantitative sacroiliac joint scintigraphy. J Nucl Med. 1998;39:1269–72.PubMedPubMedCentralGoogle Scholar
  257. 257.
    Faflia CP, Prassopoulos PK, Daskalogiannaki ME, Gourtsoyiannis NC. Variation in the appearance of the normal sacroiliac joint on pelvic CT. Clin Radiol. 1998;53:742–6.PubMedCrossRefGoogle Scholar
  258. 258.
    Brooke R. The sacro-iliac joint. J Anat. 1924;58:299–305.PubMedPubMedCentralGoogle Scholar
  259. 259.
    Brunner C, Kissling R, Jacob HA. The effects of morphology and histopathologic findings on the mobility of the sacroiliac joint. Spine. 1991;16:1111–7.PubMedCrossRefGoogle Scholar
  260. 260.
    Bellamy N, Park W, Rooney PJ. What do we know about the sacroiliac joint? Semin Arthritis Rheum. 1983;12:282–313.PubMedCrossRefGoogle Scholar
  261. 261.
    Sashin D. A critical analysis of the anatomy and the pathologic changes of the sacroiliac joints. J Bone Joint Surg. 1930;12:891–910.Google Scholar
  262. 262.
    Vleeming A, van Wingerden JP, Snijders CJ, Stoeckart R, Dijkstra PF, Stijnen T. Mobility in the SI-joints in the elderly: a kinematic and roentgenologic study. Clin Biomech (Bristol, Avon). 1992;7:170–8.CrossRefGoogle Scholar
  263. 263.
    Dar G, Peleg S, Masharawi Y, et al. Sacroiliac joint bridging: demographical and anatomical aspects. Spine. 2005;30:E429–32.PubMedCrossRefGoogle Scholar
  264. 264.
    Dreyfuss P, Dryer S, Griffin J, Hoffman J, Walsh N. Positive sacroiliac screening tests in asymptomatic adults. Spine. 1994;19:1138–43.PubMedCrossRefGoogle Scholar
  265. 265.
    Salsabili N, Valojerdy MR, Hogg DA. Variations in thickness of articular cartilage in the human sacroiliac joint. Clin Anat. 1995;8:388–90.PubMedCrossRefGoogle Scholar
  266. 266.
    Kristiansson P, Svardsudd K. Discriminatory power of tests applied in back pain during pregnancy. Spine. 1996;21:2337–43.PubMedCrossRefGoogle Scholar
  267. 267.
    Snijders CJ, Seroo JM, Snijder JGT, Hoedt HT. Change in form of the spine as a consequence of pregnancy. Digest of the 11th Int Conf Med Biol Eng. Ottawa: Conference Committee; 1976, pp. 670–1.Google Scholar
  268. 268.
    Mens JM, Vleeming A, Stoeckart R, Stam HJ, Snijders CJ. Understanding peripartum pelvic pain. Implications of a patient survey. Spine. 1996;21:1363–9.PubMedCrossRefGoogle Scholar
  269. 269.
    Rathmell JP, Viscomi CM, Bernstein IM. Managing pain during pregnancy and lactation. in Practical management of pain, 3rd edn. ed. by P. Raj (Mosby, Inc, St. Louis, 2000), pp. 196–211.Google Scholar
  270. 270.
    Gerlach UJ, Lierse W. Functional construction of the sacroiliac ligamentous apparatus. Acta Anat (Basel). 1992;144:97–102.CrossRefGoogle Scholar
  271. 271.
    Lee D. Biomechanics of the lumbo-pelvic-hip complex. An approach to the examination and treatment of the lumbo-pelvic-hip region. New York: Churchill Livingstone; 1999. p. 43–72.Google Scholar
  272. 272.
    Vleeming A, Pool-Goudzwaard AL, Stoeckart R, van Wingerden JP, Snijders CJ. The posterior layer of the thoracolumbar fascia. Its function in load transfer from spine to legs. Spine. 1995;20:753–8.PubMedCrossRefGoogle Scholar
  273. 273.
    Kapandji IA. The physiology of the joints. Edinburgh: Churchill Livingstone; 1974.Google Scholar
  274. 274.
    Williams PL. Gray’s anatomy. 38th ed. London: Churchill Livingstone; 1995.Google Scholar
  275. 275.
    Vleeming A, Pool-Goudzwaard AL, Hammudoghlu D, Stoeckart R, Snijders CJ, Mens JM. The function of the long dorsal sacroiliac ligament: its implication for understanding low back pain. Spine. 1996;21:556–62.PubMedCrossRefGoogle Scholar
  276. 276.
    Luk KD, Ho HC, Leong JC. The iliolumbar ligament. A study of its anatomy, development and clinical significance. J Bone Joint Surg Br. 1986;68:197–200.PubMedCrossRefGoogle Scholar
  277. 277.
    Pool-Goudzwaard AL, Kleinrensink GJ, Snijders CJ, Entius C, Stoeckart R. The sacroiliac part of the iliolumbar ligament. J Anat. 2001;199:457–63.PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Steinke H, Hammer N, Slowik V, et al. Novel insights into the sacroiliac joint ligaments. Spine (Phila Pa 1976). 2010;35:257–63.CrossRefGoogle Scholar
  279. 279.
    Ostgaard HC. Assessment and treatment of low back pain in working pregnant women. Semin Perinatol. 1996;20:61–9.PubMedCrossRefGoogle Scholar
  280. 280.
    Damen L, Buyruk HM, Guler-Uysal F, Lotgering FK, Snijders CJ, Stam HJ. The prognostic value of asymmetric laxity of the sacroiliac joints in pregnancy-related pelvic pain. Spine. 2002;27:2820–4.PubMedCrossRefGoogle Scholar
  281. 281.
    Noren L, Ostgaard S, Johansson G, Ostgaard HC. Lumbar back and posterior pelvic pain during pregnancy: a 3-year follow-up. Eur Spine J. 2002;11:267–71.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.SCD Program in Physical Therapy, Department of Rehabilitation SciencesTexas Tech University Health Sciences CenterLubbockUSA
  2. 2.Department of Rehabilitation SciencesTexas Tech University Health Sciences CenterLubbockUSA

Personalised recommendations