A Family of Unit Consistent Multidimensional Poverty Indices

  • Satya R. Chakravarty
  • Conchita D’AmbrosioEmail author
Part of the Economic Studies in Inequality, Social Exclusion and Well-Being book series (EIAP, volume 9)


This chapter characterizes a family of subgroup decomposable unit consistent multidimensional poverty indices. Unit consistency requires that poverty rankings should remain unaltered when dimensions are expressed in different measurement units. The characterized family is a simple generalization of a family of unit consistent income poverty index suggested by Zheng (2007b). The paper also illustrates the index numerically using Turkish data.


Social Welfare Function Welfare Loss Multidimensional Poverty Poverty Index European Community Household Panel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This paper was prepared for the workshop on Multidimensional Poverty and Pro-poor Growth in the MENA Countries, Nice, June 11–12, 2009. We thank participants for suggestions and the organizers, Valérie Bérenger and Florent Bresson for comments and for providing the dataset.


  1. Alkire, S., & Foster, J. E. (2007). Counting and multidimensional poverty measurement. OPHI Working Paper.Google Scholar
  2. Anand, S. (1997). Aspects of poverty in Malaysia. Review of Income and Wealth, 23, 1–16.CrossRefGoogle Scholar
  3. Atkinson, A. B. (1998). Social exclusion, poverty and unemployment. London: London School of Economics.Google Scholar
  4. Atkinson, A. B., & Bourguignon, F. (1982). The comparison of multidimensioned distributions of economic status. Review of Economic Studies, 49, 183–201.CrossRefGoogle Scholar
  5. Blackorby, C., & Donaldson, D. (1980). Ethical indices for the measurement of poverty. Econometrica, 58, 1053–1060.CrossRefGoogle Scholar
  6. Bourguignon, F., & Chakravarty, S. R. (1999). A family of multidimensional poverty measures. In D. J. Slottjee (Ed.), Advances in econometrics, income distribution and scientific methodology: Essays in honor of C. Dagum. Berlin: Physica Verlag.Google Scholar
  7. Bourguignon, F., & Chakravarty, S. R. (2003). The measurement of multidimensional poverty. Journal of Economic Inequality, 1, 25–49.CrossRefGoogle Scholar
  8. Bourguignon, F., & Chakravarty, S. R. (2008). Multidimensional poverty orderings theory and applications. In K. Basu & R. Kanbur (Eds.), Welfare, development, philosophy and social science: Essays for Amartya Sen’s 75th birthday (Volume 2: Development Economics and Policy). Oxford: Clarendon Press.Google Scholar
  9. Bourguignon, F., & Fields, G. (1997). Discontinuous losses from poverty, generalized P measures and optimal transfers to the poor. Journal of Public Economics, 63, 155–175.CrossRefGoogle Scholar
  10. Chakravarty, S. R. (1983a). A new index of poverty. Mathematical Social Sciences, 6, 307–313.CrossRefGoogle Scholar
  11. Chakravarty, S. R. (1983b). Ethically flexible measures of poverty. Canadian Journal of Economics, 16, 74–85.CrossRefGoogle Scholar
  12. Chakravarty, S. R. (1990). Ethical social index numbers. New York: Springer.CrossRefGoogle Scholar
  13. Chakravarty, S. R. (1997). On Shorrocks’ reinvestigation of the Sen poverty index. Econometrica, 65, 1241–1242.CrossRefGoogle Scholar
  14. Chakravarty, S. R. (2009). Inequality, polarization and poverty: Advances in distributional analysis. New York: Springer.CrossRefGoogle Scholar
  15. Chakravarty, S. R., & Silber, J. (2008). Measuring multidimensional poverty: The axiomatic approach. In N. Kakwani & J. Silber (Eds.), Quantitative approaches to multidimensional poverty measurement. London: Palgrave MacMillan.Google Scholar
  16. Chakravarty, S. R., Mukherjee, D., & Ranade, R. (1998). On the family of subgroup and factor decomposable measures of multidimensional poverty. Research on Economic Inequality, 8, 175–194.Google Scholar
  17. Clark, S., Hamming, R., & Ulph, D. (1981). On indices for the measurement of poverty. Economic Journal, 91, 515–526.CrossRefGoogle Scholar
  18. Cowell, F. A. (1988). Poverty measures, inequality and decomposability. In D. Bos, M. Rose, & C. Seidl (Eds.), Welfare and efficiency in public economics. New York: Springer.Google Scholar
  19. Diez, H., Lasso de la Vega, M. C., & Urrutia, A. M. (2008). Multidimensional unit- and subgroup consistent inequality and poverty measures: some characterization results. Research on Economic Inequality, 16, 189–211.CrossRefGoogle Scholar
  20. Donaldson, D., & Weymark, J. A. (1986). Properties of fixed-population poverty indices. International Economic Review, 27, 667–688.CrossRefGoogle Scholar
  21. Foster, J. E., & Shorrocks, A. F. (1991). Subgroup consistent poverty indices. Econometrica, 59, 687–709.CrossRefGoogle Scholar
  22. Foster, J. E., Greer, J., & Thorbecke, E. (1984). A class of decomposable poverty measures. Econometrica, 42, 761–766.Google Scholar
  23. Hagenaars, A. (1987). A class of poverty indices. International Economic Review, 28, 583–607.CrossRefGoogle Scholar
  24. Kakwani, N. C. (1980). On a class of poverty measures. Econometrica, 48, 437–446.CrossRefGoogle Scholar
  25. Kolm, S. C. (1977). Mulditimensional egalitarianisms. Quarterly Journal of Economics, 91, 1–13.CrossRefGoogle Scholar
  26. Ravallion, M. (1996). Issues in measuring and modeling poverty. Economic Journal, 106, 1328–1343.CrossRefGoogle Scholar
  27. Savaglio, E. (2006). Three approaches to the analysis of multidimensional inequality. In F. Farina & E. Savaglio (Eds.), Inequality and economic integration. London: Routledge.Google Scholar
  28. Seidl, C. (1988). Poverty measurement: A survey. In D. Bos, M. Rose & C. Seidl (Eds.), Welfare and efficiency in public economics. New York: Springer.Google Scholar
  29. Sen, A. K. (1976). Poverty an ordinal approach to measurement. Econometrica, 44, 219–231.CrossRefGoogle Scholar
  30. Sen, A. K. (1981). Poverty and famines. Oxford: Clarendon Press.Google Scholar
  31. Sen, A. K. (1985). Commodities and capabilities. Amsterdam: North Holland.Google Scholar
  32. Sen, A. K. (1992). Inequality re-examined. Cambridge, MA: Harvard University Press.Google Scholar
  33. Sen, A. K. (2002). Rationality and freedom. Cambridge: Harvard University Press.Google Scholar
  34. Shorrocks, A. F. (1995). Revisiting the Sen poverty index. Econometrica, 63, 1225–1230.CrossRefGoogle Scholar
  35. Streeten, P. (1981). First things first: Meeting basic human needs in developing countries. New York: Oxford University Press.Google Scholar
  36. Takayama, N. (1979). Poverty income inequality and their measures: Professor Sen’s axiomatic approach reconsidered. Econometrica, 47, 749–759.CrossRefGoogle Scholar
  37. Thon, D. (1983). A poverty measure. Indian Economic Journal, 30, 55–70.Google Scholar
  38. Townsend, P. (1979). Poverty in the United Kingdom. Harmondsworth: Penguin.Google Scholar
  39. Tsui, K. Y. (1999). Multidimensional inequality and multidimensional generalized entropy measures: An axiomatic derivation. Social Choice and Welfare, 16, 145–157.CrossRefGoogle Scholar
  40. Tsui, K. Y. (2002). Multidimensional poverty indices. Social Choice and Welfare, 19, 69–93.CrossRefGoogle Scholar
  41. Weymark, J. A. (2006). The normative approaches to the measurement of multidimensional inequality. In F. Farina & E. Savaglio (Eds.), Inequality and economic integration. London: Routledge.Google Scholar
  42. Zheng, B. (1993). An axiomatic characterization of the Watts poverty measure. Economics Letters, 42, 81–86.CrossRefGoogle Scholar
  43. Zheng, B. (1997). Aggregate poverty measures. Journal of Economic Surveys, 11, 123–162.CrossRefGoogle Scholar
  44. Zheng, B. (2007a). Unit-consistent decomposable inequality measures. Economica, 74, 97–111.CrossRefGoogle Scholar
  45. Zheng, B. (2007b). Unit-consistent poverty indices. Economic Theory, 31, 113–142.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Indian Statistical InstituteKolkataIndia
  2. 2.Università di Milano-BicoccaMilanItaly
  3. 3.DIW Berlin and Econpubblica, Università BocconiBerlinGermany

Personalised recommendations