Defective Complement Action and Control Defines Disease Pathology for Retinal and Renal Disorders and Provides a Basis for New Therapeutic Approaches

  • Peter F. ZipfelEmail author
  • Nadine Lauer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 735)


The complement system is a central homeostatic system of the vertebrate organism and part of innate immunity. When activated, complement has multiple functions and drives homeostasis and the elimination of infectious microbes (Walport MJ (2001) N Engl J Med 344:1140–1144; Zipfel PF, Skerka C (2009) Nat Rev Immunol 9:729–740). Several inflammatory disorders are caused by defective complement action, and the growing, detailed understanding of the underlying pathophysiological principles translate into therapy with complement inhibitors. As complement inhibitors have been approved for treatment of the complement-mediated disorders hemolytic uremic syndrome (HUS) and paroxysmal nocturnal hemoglobinuria (PNH), there is a growing interest to extended and improve the options for other complement-mediated diseases. Here, we summarize the current understanding and concepts how defective complement action at biological surfaces lead to pathology and disease, and how this understanding can be used for the development of surface targeting complement inhibitors.


Retinal Pigment Epithelial Cell Hemolytic Uremic Syndrome Paroxysmal Nocturnal Hemoglobinuria Complement Cascade Terminal Complement Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Atypical hemolytic uremic syndrome


Age-related macular degeneration


The alternative pathway


Complement Factor H-related protein


The classical pathway


C-reactive protein


Damage-associated molecular patterns


Deficient for CFHR proteins and Factor H autoantibody positive HUS


Factor H-like protein


The lectin pathway


Monomeric CRP




Membranoproliferative glomerulonephritis type II


Paroxysmal nocturnal hemoglobinuria


Pentameric CRP


Retinal pigment epithelial cells


Short consensus repeat


Terminal complement complex



The work of the authors is supported by the Deutsche Forschungsgemeinschaft (DFG), and NL is supported by a Ph.D. research grant from the German ProRetina Foundation.


  1. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431CrossRefGoogle Scholar
  2. Appel GB, Cook HT, Hageman G, Jennette JC, Kashgarian M, Kirschfink M, Lambris JD, Lanning L, Lutz HU, Meri S, Rose NR, Salant DJ, Sethi S, Smith RJ, Smoyer W, Tully HF, Tully SP, Walker P, Welsh M, Wurzner R, Zipfel PF (2005) Membranoproliferative glomerulonephritis type II (dense deposit disease): an update. J Am Soc Nephrol 16:1392–1403CrossRefGoogle Scholar
  3. Atkinson C, Song H, Lu B, Qiao F, Burns TA, Holers VM, Tsokos GC, Tomlinson S (2005) Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection. J Clin Invest 115:2444–2453CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blackmore TK, Sadlon TA, Ward HM, Lublin DM, Gordon DL (1996) Identification of a heparin binding domain in the seventh short consensus repeat of complement factor H. J Immunol 157:5422–5427PubMedGoogle Scholar
  5. Cai J, Wu M, Nelson KC, Sternberg P Jr, Jones DP (1999) Oxidant-induced apoptosis in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 40:959–966PubMedGoogle Scholar
  6. Cai J, Nelson KC, Wu M, Sternberg P Jr, Jones DP (2000) Oxidative damage and protection of the RPE. Prog Retin Eye Res 19:205–221CrossRefGoogle Scholar
  7. Caprioli J, Bettinaglio P, Zipfel PF, Amadei B, Daina E, Gamba S, Skerka C, Marziliano N, Remuzzi G, Noris M (2001) The molecular basis of familial hemolytic uremic syndrome: mutation analysis of factor H gene reveals a hot spot in short consensus repeat 20. J Am Soc Nephrol 12:297–307PubMedGoogle Scholar
  8. Carroll MC (2000) The role of complement in B cell activation and tolerance. Adv Immunol 74:61–88CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chang MK, Binder CJ, Torzewski M, Witztum JL (2002) C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: phosphorylcholine of oxidized phospholipids. Proc Natl Acad Sci USA 99:13043–13048CrossRefGoogle Scholar
  10. Chen Q, Muller D, Rudolph B, Hartmann A, Kuwertz-Broking E, Wu K, Kirschfink M, Skerka C, Zipfel PF (2011) Combined C3b and factor B autoantibodies and MPGN type II. N Engl J Med 365:2340–2342CrossRefGoogle Scholar
  11. Chou MY, Hartvigsen K, Hansen LF, Fogelstrand L, Shaw PX, Boullier A, Binder CJ, Witztum JL (2008) Oxidation-specific epitopes are important targets of innate immunity. J Intern Med 263:479–488CrossRefGoogle Scholar
  12. Clark SJ, Perveen R, Hakobyan S, Morgan BP, Sim RB, Bishop PN, Day AJ (2010) Impaired binding of the age-related macular degeneration-associated complement factor H 402H allotype to Bruch’s membrane in human retina. J Biol Chem 285:30192–30202CrossRefPubMedPubMedCentralGoogle Scholar
  13. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99:14682–14687CrossRefGoogle Scholar
  14. Edwards AO, Ritter R III, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424CrossRefGoogle Scholar
  15. Eisenhardt SU, Habersberger J, Murphy A, Chen YC, Woollard KJ, Bassler N, Qian H, von Zur Muhlen C, Hagemeyer CE, Ahrens I, Chin-Dusting J, Bobik A, Peter K (2009) Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circ Res 105:128–137CrossRefGoogle Scholar
  16. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128CrossRefGoogle Scholar
  17. Fridkis-Hareli M, Storek M, Mazsaroff I, Risitano AM, Lundberg AS, Horvath CJ, Holers VM (2011) Design and development of TT30, a novel C3d-targeted C3/C5 convertase inhibitor for treatment of human complement alternative pathway-mediated diseases. Blood 118:4705–4713CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fritsche LG, Lauer N, Hartmann A, Stippa S, Keilhauer CN, Oppermann M, Pandey MK, Kohl J, Zipfel PF, Weber BH, Skerka C (2010) An imbalance of human complement regulatory proteins CFHR1, CFHR3 and factor H influences risk for age-related macular degeneration (AMD). Hum Mol Genet 23:4694–4704CrossRefGoogle Scholar
  19. Fujihara M, Nagai N, Sussan TE, Biswal S, Handa JT (2008) Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice. PLoS One 3:e3119CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT, Hageman GS, Dean M, Allikmets R (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458–462CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732CrossRefPubMedPubMedCentralGoogle Scholar
  22. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hellwage J, Kuhn S, Zipfel PF (1997) The human complement regulatory factor-H-like protein 1, which represents a truncated form of factor H, displays cell-attachment activity. Biochem J 326:321–327CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hellwage J, Jokiranta TS, Friese MA, Wolk TU, Kampen E, Zipfel PF, Meri S (2002) Complement C3b/C3d and cell surface polyanions are recognized by overlapping binding sites on the most carboxyl-terminal domain of complement factor H. J Immunol 169:6935–6944CrossRefPubMedPubMedCentralGoogle Scholar
  25. Herbert AP, Uhrin D, Lyon M, Pangburn MK, Barlow PN (2006) Disease-associated sequence variations congregate in a polyanion recognition patch on human factor H revealed in three-dimensional structure. J Biol Chem 281:16512–16520CrossRefGoogle Scholar
  26. Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, Ufret RL, Salomon RG, Perez VL (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14:194–198CrossRefPubMedPubMedCentralGoogle Scholar
  27. Huang Y, Qiao F, Atkinson C, Holers VM, Tomlinson S (2008) A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury. J Immunol 181:8068–8076CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hughes AE, Orr N, Esfandiary H, Diaz-Torres M, Goodship T, Chakravarthy U (2006) A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nat Genet 38:1173–1177CrossRefGoogle Scholar
  29. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358:2606–2617CrossRefGoogle Scholar
  30. Ji SR, Wu Y, Zhu L, Potempa LA, Sheng FL, Lu W, Zhao J (2007) Cell membranes and liposomes dissociate C-reactive protein (CRP) to form a new, biologically active structural intermediate: mCRP(m). FASEB J 21:284–294CrossRefGoogle Scholar
  31. Johnson LV, Leitner WP, Staples MK, Anderson DH (2001) Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res 73:887–896CrossRefGoogle Scholar
  32. Jokiranta TS, Cheng ZZ, Seeberger H, Jozsi M, Heinen S, Noris M, Remuzzi G, Ormsby R, Gordon DL, Meri S, Hellwage J, Zipfel PF (2005) Binding of complement factor H to endothelial cells is mediated by the carboxy-terminal glycosaminoglycan binding site. Am J Pathol 167:1173–1181CrossRefPubMedPubMedCentralGoogle Scholar
  33. Józsi M, Zipfel PF (2008) Factor H family proteins and human diseases. Trends Immunol 29:380–387CrossRefGoogle Scholar
  34. Kajander T, Lehtinen MJ, Hyvarinen S, Bhattacharjee A, Leung E, Isenman DE, Meri S, Goldman A, Jokiranta TS (2011) Dual interaction of factor H with C3d and glycosaminoglycans in host-nonhost discrimination by complement. Proc Natl Acad Sci USA 108:2897–2902CrossRefGoogle Scholar
  35. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kuhn S, Zipfel PF (1996) Mapping of the domains required for decay acceleration activity of the human factor H-like protein 1 and factor H. Eur J Immunol 26:2383–2387CrossRefGoogle Scholar
  37. Lapeyraque AL, Fremeaux-Bacchi V, Robitaille P (2011) Efficacy of eculizumab in a patient with factor-H-associated atypical hemolytic uremic syndrome. Pediatr Nephrol 26:621–624CrossRefGoogle Scholar
  38. Lauer N, Mihlan M, Hartmann A, Schlotzer-Schrehardt U, Keilhauer C, Scholl HP, Charbel IP, Holz F, Weber BH, Skerka C, Zipfel PF (2011) Complement regulation at necrotic cell lesions is impaired by the age-related macular degeneration-associated factor-H His402 risk variant. J Immunol 187:4374–4383CrossRefGoogle Scholar
  39. Leffler J, Herbert AP, Norstrom E, Schmidt CQ, Barlow PN, Blom AM, Martin M (2010) Annexin-II, DNA, and histones serve as factor H ligands on the surface of apoptotic cells. J Biol Chem 285:3766–3776CrossRefGoogle Scholar
  40. Licht C, Heinen S, Jozsi M, Loschmann I, Saunders RE, Perkins SJ, Waldherr R, Skerka C, Kirschfink M, Hoppe B, Zipfel PF (2006) Deletion of Lys224 in regulatory domain 4 of Factor H reveals a novel pathomechanism for dense deposit disease (MPGN II). Kidney Int 70:42–50CrossRefGoogle Scholar
  41. Manuelian T, Hellwage J, Meri S, Caprioli J, Noris M, Heinen S, Jozsi M, Neumann HP, Remuzzi G, Zipfel PF (2003) Mutations in factor H reduce binding affinity to C3b and heparin and surface attachment to endothelial cells in hemolytic uremic syndrome. J Clin Invest 111:1181–1190CrossRefPubMedPubMedCentralGoogle Scholar
  42. Meri S, Pangburn MK (1990) Discrimination between activators and nonactivators of the alternative pathway of ­complement: regulation via a sialic acid/polyanion binding site on factor H. Proc Natl Acad Sci USA 87: 3982–3986CrossRefGoogle Scholar
  43. Mihlan M, Stippa S, Jozsi M, Zipfel PF (2009) Monomeric CRP contributes to complement control in fluid phase and on cellular surfaces and increases phagocytosis by recruiting factor H. Cell Death Differ 16:1630–1640CrossRefGoogle Scholar
  44. Mihlan M, Blom AM, Kupreishvili K, Lauer N, Stelzner K, Bergstrom F, Niessen HW, Zipfel PF (2011) Monomeric C-reactive protein modulates classic complement activation on necrotic cells. FASEB J 25:4198–4210CrossRefGoogle Scholar
  45. Miller YI, Choi SH, Wiesner P, Fang L, Harkewicz R, Hartvigsen K, Boullier A, Gonen A, Diehl CJ, Que X, Montano E, Shaw PX, Tsimikas S, Binder CJ, Witztum JL (2011) Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res 108:235–248CrossRefPubMedPubMedCentralGoogle Scholar
  46. Misasi R, Huemer HP, Schwaeble W, Solder E, Larcher C, Dierich MP (1989) Human complement factor H: an additional gene product of 43 kDa isolated from human plasma shows cofactor activity for the cleavage of the third component of complement. Eur J Immunol 19:1765–1768CrossRefGoogle Scholar
  47. Mulligan MS, Warner RL, Rittershaus CW, Thomas LJ, Ryan US, Foreman KE, Crouch LD, Till GO, Ward PA (1999) Endothelial targeting and enhanced antiinflammatory effects of complement inhibitors possessing sialyl Lewisx moieties. J Immunol 162:4952–4959PubMedGoogle Scholar
  48. Ogden CA, Elkon KB (2006) Role of complement and other innate immune mechanisms in the removal of apoptotic cells. Curr Dir Autoimmun 9:120–142PubMedGoogle Scholar
  49. Okamoto H, Umeda S, Obazawa M, Minami M, Noda T, Mizota A, Honda M, Tanaka M, Koyama R, Takagi I, Sakamoto Y, Saito Y, Miyake Y, Iwata T (2006) Complement factor H polymorphisms in Japanese population with age-related macular degeneration. Mol Vis 12:156–158PubMedGoogle Scholar
  50. Oppermann M, Manuelian T, Jozsi M, Brandt E, Jokiranta TS, Heinen S, Meri S, Skerka C, Götze O, Zipfel PF (2006) Recognition mechanisms of the complement regulator factor H: Target binding via the C-terminus precedes complement regulation by the N-terminus. Clin Exp Immunol 144:342–352CrossRefGoogle Scholar
  51. Pangburn MK (2002) Cutting edge: localization of the host recognition functions of complement factor H at the carboxyl-terminal: implications for hemolytic uremic syndrome. J Immunol 169:4702–4706CrossRefGoogle Scholar
  52. Pangburn MK, Muller-Eberhard HJ (1983) Initiation of the alternative complement pathway due to spontaneous hydrolysis of the thioester of C3. Ann N Y Acad Sci 421:291–298CrossRefGoogle Scholar
  53. Pascolini D, Mariotti SP, Pokharel GP, Pararajasegaram R, Etya’ale D, Negrel AD, Resnikoff S (2004) Global update of available data on visual impairment: a compilation of population-based prevalence studies. Ophthalmic Epidemiol 11:67–115CrossRefGoogle Scholar
  54. Pickering MC, de Jorge EG, Martinez-Barricarte R, Recalde S, Garcia-Layana A, Rose KL, Moss J, Walport MJ, Cook HT, de Cordoba SR, Botto M (2007) Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. J Exp Med 204:1249–1256CrossRefPubMedPubMedCentralGoogle Scholar
  55. Poon IK, Hulett MD, Parish CR (2010) Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ 17:381–397CrossRefGoogle Scholar
  56. Potentia P (2009) POT-4 drug candidate for age-related macular degeneration successfully completes phase I clinical trial – prepares for phase II. Press Release 2009Google Scholar
  57. Prosser BE, Johnson S, Roversi P, Herbert AP, Blaum BS, Tyrrell J, Jowitt TA, Clark SJ, Tarelli E, Uhrin D, Barlow PN, Sim RB, Day AJ, Lea SM (2007) Structural basis for complement factor H linked age-related macular degeneration. J Exp Med 204:2277–2283CrossRefPubMedPubMedCentralGoogle Scholar
  58. Qu H, Magotti P, Ricklin D, Wu EL, Kourtzelis I, Wu YQ, Kaznessis YN, Lambris JD (2011) Novel analogues of the therapeutic complement inhibitor compstatin with significantly improved affinity and potency. Mol Immunol 48:481–489CrossRefGoogle Scholar
  59. Ricklin D, Lambris JD (2007) Complement-targeted therapeutics. Nat Biotechnol 25:1265–1275CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ricklin D, Lambris JD (2008) Compstatin: a complement inhibitor on its way to clinical application. Adv Exp Med Biol 632:273–292PubMedPubMedCentralGoogle Scholar
  61. Rodriguez de Cordoba S, Esparza-Gordillo J, Goicoechea de Jorge E, Lopez-Trascasa M, Sanchez-Corral P (2004) The human complement factor H: functional roles, genetic variations and disease associations. Mol Immunol 41:355–367CrossRefGoogle Scholar
  62. Rohrer B, Long Q, Coughlin B, Wilson RB, Huang Y, Qiao F, Tang PH, Kunchithapautham K, Gilkeson GS, Tomlinson S (2009) A targeted inhibitor of the alternative complement pathway reduces angiogenesis in a mouse model of age-related macular degeneration. Invest Ophthalmol Vis Sci 50:3056–3064CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L (2007) Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 25:1256–1264CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sahu A, Lambris JD (2001) Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev 180:35–48CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sahu A, Kay BK, Lambris JD (1996) Inhibition of human complement by a C3-binding peptide isolated from a phage-displayed random peptide library. J Immunol 157:884–891Google Scholar
  66. Sahu A, Soulika AM, Morikis D, Spruce L, Moore WT, Lambris JD (2000) Binding kinetics, structure-activity relationship, and biotransformation of the complement inhibitor compstatin. J Immunol 165:2491–2499CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sahu A, Morikis D, Lambris JD (2003) Compstatin, a peptide inhibitor of complement, exhibits species-specific binding to complement component C3. Mol Immunol 39:557–566CrossRefPubMedPubMedCentralGoogle Scholar
  68. Schmidt CQ, Herbert AP, Hocking HG, Uhrin D, Barlow PN (2008) Translational mini-review series on complement factor H: structural and functional correlations for factor H. Clin Exp Immunol 151:14–24CrossRefPubMedPubMedCentralGoogle Scholar
  69. Simonelli F, Frisso G, Testa F, di Fiore R, Vitale DF, Manitto MP, Brancato R, Rinaldi E, Sacchetti L (2006) Polymorphism p.402Y  >  H in the complement factor H protein is a risk factor for age related macular degeneration in an Italian population. Br J Ophthalmol 90:1142–1145CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sjoberg AP, Trouw LA, Blom AM (2009) Complement activation and inhibition: a delicate balance. Trends Immunol 30:83–90CrossRefPubMedPubMedCentralGoogle Scholar
  71. Skerka C, Lauer N, Weinberger AA, Keilhauer CN, Suhnel J, Smith R, Schlotzer-Schrehardt U, Fritsche L, Heinen S, Hartmann A, Weber BH, Zipfel PF (2007) Defective complement control of factor H (Y402H) and FHL-1 in age-related macular degeneration. Mol Immunol 44:3398–3406CrossRefGoogle Scholar
  72. Smith GP, Smith RA (2001) Membrane-targeted complement inhibitors. Mol Immunol 38:249–255CrossRefGoogle Scholar
  73. Souied EH, Leveziel N, Richard F, Dragon-Durey MA, Coscas G, Soubrane G, Benlian P, Fremeaux-Bacchi V (2005) Y402H complement factor H polymorphism associated with exudative age-related macular degeneration in the French population. Mol Vis 11:1135–1140PubMedGoogle Scholar
  74. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881CrossRefGoogle Scholar
  75. Suzuki M, Kamei M, Itabe H, Yoneda K, Bando H, Kume N, Tano Y (2007) Oxidized phospholipids in the macula increase with age and in eyes with age-related macular degeneration. Mol Vis 13:772–778PubMedPubMedCentralGoogle Scholar
  76. Thurman JM, Renner B, Kunchithapautham K, Ferreira VP, Pangburn MK, Ablonczy Z, Tomlinson S, Holers VM, Rohrer B (2009) Oxidative stress renders retinal pigment epithelial cells susceptible to complement-mediated injury. J Biol Chem 284:16939–16947CrossRefPubMedPubMedCentralGoogle Scholar
  77. Trouw LA, Blom AM, Gasque P (2008) Role of complement and complement regulators in the removal of apoptotic cells. Mol Immunol 45:1199–1207CrossRefGoogle Scholar
  78. Walport MJ (2001) Complement. First of two parts. N Engl J Med 344:1058–1066CrossRefGoogle Scholar
  79. Weismann D, Hartvigsen K, Lauer N, Bennett KL, Scholl HP, Charbel IP, Cano M, Brandstatter H, Tsimikas S, Skerka C, Superti-Furga G, Handa JT, Zipfel PF, Witztum JL, Binder CJ (2011) Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature 478:76–81CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, Clayton DG, Hayward C, Morgan J, Wright AF, Armbrecht AM, Dhillon B, Deary IJ, Redmond E, Bird AC, Moore AT (2007) Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 357:553–561CrossRefGoogle Scholar
  81. Zhou J, Jang YP, Kim SR, Sparrow JR (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci USA 103:16182–16187CrossRefGoogle Scholar
  82. Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9:729–740CrossRefGoogle Scholar
  83. Zipfel PF, Heinen S, Jozsi M, Skerka C (2006) Complement and diseases: defective alternative pathway control results in kidney and eye diseases. Mol Immunol 43:97–106CrossRefGoogle Scholar
  84. Zipfel PF, Mihlan M, Skerka C (2007) The alternative pathway of complement: a pattern recognition system. Adv Exp Med Biol 598:80–92CrossRefGoogle Scholar
  85. Zipfel PF, Lauer N, Skerka C (2010a) The role of complement in AMD. Adv Exp Med Biol 703:9–24CrossRefGoogle Scholar
  86. Zipfel PF, Mache C, Muller D, Licht C, Wigger M, Skerka C (2010b) DEAP-HUS: deficiency of CFHR plasma proteins and autoantibody-positive form of hemolytic uremic syndrome. Pediatr Nephrol 10:2009–2019CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Infection BiologyLeibniz Institute for Natural Product Research and Infection BiologyJenaGermany
  2. 2.Friedrich Schiller UniversityJenaGermany

Personalised recommendations