Advertisement

Spreading Chirality Throughout the Galaxy and Throughout the Earth

  • Richard N. BoydEmail author
Chapter
  • 964 Downloads
Part of the Astronomers' Universe book series (ASTRONOM)

Abstract

To what extent would the molecules that have been processed by SNAAP become widely distributed throughout the Galaxy? As we discussed in earlier chapters, the molecules are thought to be created and contained, probably in dust grains, possibly in larger objects such as meteoroids or even comets (which could be agglomerations of grains) in the molecular clouds that pervade the Galaxy. The objects must then come relatively close to a star when it becomes a supernova so that they can be processed by the supernova neutrinos. Would this model predict the creation of a homochiral environment on Earth? Would it create the same chirality in every planetary environment? This chapter revisits amplifi cation in these contexts, and presents an experimental test for the SNAAP model. It also revisits the cometary missions, and predicts the results from them for the SNAAP model and the circularly polarized light model.

Keywords

Black Hole Solar System Neutron Star Massive Star Molecular Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Beacom, R.N. Boyd, and A. Mezzacappa, Black Hole Formation in Core-Collapse Supernovae and Time-of-Flight Measurements of the Neutrino Masses, Phys. Rev. D 63, 073011 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    B.G. Elmegreen, Star Formation in a Crossing Time, Astrophys. J. 530, 277 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    L. Hartmann, J. Ballesteros-Paredes, and E.A. Bergin, Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood, Astrophys. J. 562, 852 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    C. Lunardini, Diffuse Neutrino Flux from Failed Supernovae, Phys. Rev. Letters 102, 231101–1 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    R. Duncan and C. Thompson, Formation of Very Strongly Magnetized Neutron Stars—A.J. Drake, S.G. Djorgovski, J.L. Prieto, A. Mahabal, D. Balam, R. Williams, M.J. Graham, M. Catalan, E. Beshore, and S. Larson, Discovery of the Extremely Energetic Supernova 2008fz, Astrophys. J. 718, L127 (2010)Google Scholar
  6. 6.
    K.M. Ferriere, The Interstellar Environment of our Galaxy, Rev. Mod. Phys. 73, 1031 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    R.N. Boyd, T. Kajino, and T. Onaka, Supernovae and the Chirality of the Amino Acids, Astrobiology 10, 561 (2010)Google Scholar
  8. 8.
    R.N. Boyd, T. Kajino, and T. Onaka, Stardust, Supernovae, and the Chirality of the Amino Acids, Int. J. Mod. Sci. 12, 3432 (2011)CrossRefGoogle Scholar
  9. 9.
    V.I. Gol’danskii and V.V. Kuz’min, Spontaneous Breaking of Mirror Symmetry in Nature and the Origin of Life, Sov. Phys. Usp. 32, 1 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    R.T. Garrod, S.L.W. Weaver, and E. Herbst, Complex Chemistry in Star-Forming Regions: An Expanded Gas-Grain Warm-up Chemical Model, Astrophys. J. 682, 283 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    T.I. Hasegawa, E. Herbst, and C.M Leung, Models of Gas-Grain Chemistry in Dense Interstellar Clouds with Complex Organic Molecules, Astrophys. J. Suppl. 82, 167 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    J.D. Laas, R.T. Garrod, E. Herbst, and S.L.W. Weaver, Contributions from Grain Surface and Gas Phase Chemistry to the Formation of Methyl Formate and its Structural Isomers. Astrophys. J. 728, 71-1 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    D.K. Kondepudi and G.W. Nelson, Weak Neutral Currents and the Origin of Biomolecular Chirality, Nature 314, 438 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Pittard, Mass Loaded Flows, Diffuse Matter from Star Forming Regions to Active Galaxies—A volume Honouring John Dyson, ed. By T.W. Hartquist, J.M. Pittard, and S.A.E.G. Falle, Springer Dordrecht (2007); ibid, http://adsabs.harvard.edu/abs/2007dmsf.book..245P
  15. 15.
    V.V. Dwarkadas, Turbulence in Wind-Blown Bubbles Around Massive Stars, Phys. Scr. T132, 014024 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    T.W. Hartquist, J.E. Dyson, and R.J.R. Williams, Mass Injection Rates Due to Supernovae and Cloud Evaporation in Starburst Superwinds, Astrophys. J. 482, 182 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    C.L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, L. Page, D.N. Spergel, G.S. Tucker, E. ­Wollack, E.L. Wright, C. Barnes, M.R. Greason, R.S. Hill, E. Komatsu, M.R. Nolta, N. ­Odegard, H.V. Peiris, L. Verde, and J.L. Weiland, First-Year WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) Observations: Preliminary Maps and Basic Results, Astrophys. J. Suppl. Series 148, 1 (2003)CrossRefGoogle Scholar
  18. 18.
    N. Jarosik, C.L. Bennett, J. Dunkley, B. Gold, M.R. Greason, M. Halpern, R.S. Hill, G. Hinshaw, A. Kogut, E. Komatsu, D. ­Larson, M. Limon, S.S. Meyer, M.R. Nolta, N. Odegard, L. Page, K.M. Smith, D.N. Spergel, G.S. Tucker, J.L. Weiland, E. Wollack, and E.L. Wright, Seven-Year WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) Observations: Sky Maps,Systematic Errors, and Basic Results, Astrophys. J. Suppl. Series 192, 14 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    S.R. Kulkarni, L. Blitz, and C. Heiles, Atomic Hydrogen in the Outer Milky Way, Astrophys. J. Lett. 259, L63 (1982)ADSCrossRefGoogle Scholar
  20. 20.
    K. Soai, T. Shibata, H. Morioka, and K. Choji, Asymmetric Autocatalysis and Amplification of Enantiomeric Excess of a Chiral Molecule, Nature 378, 767 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    K. Soai and I. Sato, Asymmetric Autocatalysis and its Application to Chiral Discrimination, Chirality 14, 548 (2002)CrossRefGoogle Scholar
  22. 22.
    S.P. Mathew, H. Iwamura, and D.G. Blackmond, Amplification of Enantiomeric Excess in a Proline-Mediated Reaction, Angew. Chem. Int. Ed. 43, 3317 (2004)CrossRefGoogle Scholar
  23. 23.
    R. Breslow and M.S. Levine, Amplification of Enantiomeric Concentrations Under Credible Prebiotic Conditions, Proc. National Acad. Sciences 103, 12979 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    A. Fujiwara, j. Kawaguchi, D.K. Yeomans, M. Abe, T. Mukai, T. Okada, J. Saito, H. Yano, M. Yoshikawa, D.J. Scheeres, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, H. Ikeda, T. Kominato, H. Miyamoto, A.M. Nakamura, R. Nakamura, S. Sasaki, and K. Uesugi, The Rubble-pile Asteroid Itokawa as Observed by Hayabusa, Science 312, 1330 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    J. Saito, H. Miyamoto, R. Nakamujra, M. Ishiguro, T. Michikami, A.M. Nakamura, H. Demura, S. Sasaki, N. Hirata, C. Honda, A. Yamamoto, Y. Yokota, T. Fuse, F. Yoshida, D.J. Tholen, R.W. Gaskell, T. Hashimoto, T. Kubota, Y. Higuchi, T. Nakamura, P. Smith, K. Niraoka, T. Honda, S. Kobayashi, M. Furuya, N. Matsumoto, E. Nemoto, A. Yukishita, K. Kitazato, B. Dermawan, A. Sogame, J. Terazono, C. Shinohara, and H. Akiyama, Detailed Images of Asteroid 25143 Itokawa from Hayabusa, Science 312, 1341 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    H. Yano, T. Kubota, H. Miyamoto, T. Okada, D. Scheeres, Y. Takagi, K. Yoshida, M. Abe, S. Abe, O. Barnouin-Jha, A. Fujiwara, S. ­Hasegawa, T. Hashimoto, M. Ishiguro, M. Kato, J. Kawaguchi, T. Mukai, J. Saito, S. Sasaki, and M. Yoshikawa, Touchdown of the Hayabush Spacecraft at the Muses Sea on Itokawa, Science 312, 1350 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    W.H.-P. Thiemann and U. Meierhenrich, ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids, Orig. Life Evol. Biosphere 31, 199 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    P. deMarcellus, C. Meinert, M. Nuevo, J.-J. Filippi, G. Danger, D. Deboffle, L. Nahon, L.L.S. d’Hendecourt, and U.J. Meierhenrich, Non-racemic amino acide production by ultraviolet irradiation of achiral interstellar ice analogs with circularly polarized light. Astrophys. J. 727, L1 (2011)CrossRefGoogle Scholar
  29. 29.
    Yu. Efremenko and W.R. Hix, Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS), J. Phys: Conf. Series 173 012006 (2009)Google Scholar
  30. 30.
    R.G. Strom, R. Malhotra, T. Ito, F. Yoshida, and D.A. Kring, The Origin of Planetary Impactors in the Inner Solar System, Science 309, 1847 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    R. Gomes, H.F. Levison, K. Tsiganis, and A. Morbidelli, Origin of the Cataclysmic Late Heavy Bombardment Period of the Terrestrial Planets, Nature 435, 466 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    S.J. Mojzsis, G. Arrhenius, K.D. McKeegan, T.M. Harrison, A.P. Nutman, and C.R.L. Friend, Evidence for Life on Earth Before 3800 ­Million Years ago, Nature 384, 55 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    J.W. Schopf, A.B. Kudryavtsev, D.G. Agresti, T.J. Wdowiak, and A.D. Czaja, Laser-Raman Imagery of Earth’s Earliest Fossils, Nature 416, 73 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    B.M. Rode, D. Fitz, and T. Jakschitz, The First Steps of Chemical Evolution Towards the Origin of Life, Chemistry and Biodiversity 4, 2674 (2007)CrossRefGoogle Scholar
  35. 35.
    K.W. Plaxco and M. Gross, Astrobiology, Johns Hopkins University Press, Baltimore, 2006Google Scholar
  36. 36.
    L.J. Rothschild and R.L. Mancinelli, Life in Extreme Environments. Nature 409, 1092 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Ohio State University (Emeritus)WindsorUSA

Personalised recommendations