What Happens to the Amino Acids When the Supernova Explodes?

  • Richard N. BoydEmail author
Part of the Astronomers' Universe book series (ASTRONOM)


This is the chapter in which we will put all the things we have been discussing together, along with a few new entities, to form the SNAAP model. This will necessarily involve several important aspects of supernova astrophysics, some neutrino physics, interactions of neutrinos with nuclei, some basic nuclear physics, some physics conservation laws, and fi nally, some properties of Wolf-Rayet stars and of red giants. Along the way, I’ll try to give you some interesting facts about some of the entities we encounter, especially the neutrinos.


Black Hole Neutron Star Massive Star Will Emit Electron Neutrino 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.N. Boyd, T. Kajino, and T. Onaka, Supernovae and the Chirality of the Amino Acids, Astrobiology 10, 561 (2010)Google Scholar
  2. 2.
    R.N. Boyd, T. Kajino, and T. Onaka, Stardust, Supernovae, and the Chirality of the Amino Acids, Int. J. Mod. Sci. 12, 3432 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Esteben-Pretel, S. Pastor, R. Tomas, G.G. Raffelt, and G. Sigl, Multi-angle Effects in Collective Supernova Neutrino Oscillations, Phys. Rev. D 767, 125018 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    M.Th. Keil, G.G. Raffelt, and H.T. Janka, Monte Carlo Study of Supernova Neutrino Spectra Formation, Astrophys. J. 590, 971 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    H. Duan, G.M. Fuller, J. Carlson, and Y.-Z. Qian, Simulation of Coherent Nonlinear Neutrino Flavor Transformation in the Supernova Environment: Correlated Neutrino Trajectories, Phys. Rev. D 74, 105014 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    H. Duan, G.M. Fuller, J. Carlson, and Y.-Z. Qian, Analysis of Collective Neutrino Flavor Transformation in Supernovae, Phys. Rev. D 75, 125005 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    H. Duan, G.M. Fuller, and Y.-Z. Qian, Simple picture for Neutrino Flavor Transformation in Supernovae, Phys. Rev. D 76, 085013 (2007a)ADSCrossRefGoogle Scholar
  8. 8.
    J. Gava, J. Kneller, C. Volpe, and G.C. McLaughlin, Dynamical Collective Calculation of Supernova Neutrino Signals, Phys. Rev. Letters 103, 071101 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    C.J. Horowitz and G. Li, Cumulative parity violation in supernovae. Phys. Rev. Letters 80, 3694 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    D. Lai and Y.-Z. Qian, Neutrino transport in strongly magnetized proto-neutron stars and the origin of pulsar kicks: the effect of asymmetric magnetic field topology. Astrophys. J. 505, 844 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    P. Arras, and D. Lai, Neutrino-nucleon interactions in magnetized Neutron-star matter: the effects of parity violation. Phys. Rev. D 60, 043001-1 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    T. Maruyama, T. Kajino, N. Yasutake, M.-K. Cheoun, and C.-Y. Ryu, Asymmetric Neutrino Emission from Magnetized Proton-Neutron Star Matter Including Hyperons in Relativistic Mean Field Theory. Phys. Rev. D 83, 081303-1 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    S.M. Larson, for a description of the Catalina Sky Survey project see, updated November 26, 2003
  14. 14.
    N. Smith, W. Li, R.J. Foley, J.C. Wheeler, D. Pooley, R. ­Chornock, A.V. Filippenko, J.M. Silverman, R. Quimby, J.S. Bloom, and C. ­Hansen, SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae, Astrophys. J. 666, 1116 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Gal-Yam, A., P. Mazzalli, E.O. Ofek, P.E. Nugent, S.R. Kulkarni, M.M. Kasliwalk, R.M. Quimby, A.V. Filippenko, s.B. Cenko, R. ­Chornock, R. Waldman, D. Kasen, M. Sullivan, E.C. Beshore, A.J. Drake, R.C. Thomas, J.S. Bloom, D. Poznanski, A.A. miller, R.J. Foley, J.M. ­Wilverman, I. Arcavi, R.S. Ellis, and J. Deng, Supernova 2007bi as a Pair-Instability Explosion, Nature 462, 624 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    M. Stritzinger, M. Hamuy, N.B. Suntzeff, R.C. Smith, M.M. Phillips, J. Maza, L.G. Strolger, R. Antezana, L. Gonzalez, M. Wischnjewsky, P. Candia, J. Espinoza, D. Gonzalez, C. Stubbs, A.C. Becker, E.P. Rubenstein, and G. Galaz, Optical photometry of the Type Ia SN 1999ee and the type Ib/c SN 1999 ex in IC 5179, Astron. J. 124, 2100 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    L. Rigon, M. Turatto, S. Benetti, A. Pastorello, E. Cappellaro, I. Aretxaga, O. Vega, V. Chavushyan, F. Patat, I.J. Danziger, M. Salvo, SN 1999E: Another Piece in the Supernova-Gamma-Ray Burst Connection, Mon. Not. Royal Astron. Soc. 340, 191 (2003)Google Scholar
  18. 18.
    A.J. Drake, S.G. Djorgovski, J.L. Prieto, A. Mahabal, D. Balam, R. Williams, M.J. Graham, M. Catalan, E. Beshore, and S. Larson, Discovery of the Extremely Energetic Supernova 2008fz, Astrophys. J. 718, L127 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    A. Heger, C.L. Fryer, S.E. Woosley, N. Langer, and D.H. Hartmann, How Massive Stars End Their Life, Astrophys. J. 591, 288 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    C. Fryer, Neutrinos from Fallback onto Newly Formed Neutron Stars, Astrophys. J. 699, 409 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    P.A. Crowther, Physical Properties of Wolf-Rayet Stars, Ann Rev. Astron. Astrophys. 45, 177 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    P.M. Williams, K.A. Van der Hucht, and P.S. The, Infrared Photometry of Late-Type Wolf-Rayet Stars, Astron. Astrophys. 182, 91 (1987)ADSGoogle Scholar
  23. 23.
    S. Lepine, A.F.J. Moffat, N. St-Louis, S.V. Marchenko, and M.J. Dalton, P.A. Crowther, L.J. Smith, A.J. Willis, I. Igor, and G.H. Tovmassian, Wind Inhomogeneities in Wolf-Rayet Stars, IV. Using Clumps to Probe the Wind structure in the WC8 Star HD 192103, Astron. J. 120, 3201 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    A.F.J. Moffatt, L. Drissen, R. Lamontagne, and C. Robert, Spectroscopic Evidence for Rapid Blob Ejection in Wolf-Rayet Stars, Astrophys. J. 334, 1038 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    K.M. Ferriere, The Interstellar Environment of our Galaxy, Rev. Mod. Phys. 73, 1031 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    G.M. Fuller, W.C. Haxton, and G.C. McLaughlin, Prospects for Detecting Neutrino Flavor Oscillations, Phys. Rev. D 59, 085005 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    C. Lunardini, Diffuse Neutrino Flux from Failed Supernovae, Phys. Rev. Letters 102, 231101–1 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Ohio State University (Emeritus)WindsorUSA

Personalised recommendations