Creation of Molecules in the Interstellar Medium

  • Richard N. BoydEmail author
Part of the Astronomers' Universe book series (ASTRONOM)


Most of the information we have about the cosmos has come to us in the form of electromagnetic radiation—photons—ranging in energy from the very energetic gamma rays through visible light and extending to radio waves. Only a small fraction of the photons in the electromagnetic spectrum can actually penetrate the Earth’s atmosphere, and this dictates the basic features of the “telescopes” used to detect them. Thus, the telescopes used to detect the photons over much of the electromagnetic spectrum must be put into space. This chapter describes the basics of the electromagnetic spectrum as well as the devices that are used to detect the photons of all energies. It also describes the critically important biomolecular information that has been obtained from meteorites that have come to Earth, as well as the anticipated further information at it is hoped will be obtained from future from space missions to comets. Finally, the Drake equation, which characterizes the possibility that we will receive signals from another civilization, is discussed.


Radio Wave Interstellar Medium Radio Telescope Optical Telescope Murchison Meteorite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Ehrenfreund, W. Irvine, L. Becker, J. Blank, J.R. Brucato, L. Colangeli, S. Derenne, D. Despois, A. Dutrey, H. Fraaije, A. Lazcano, T. Owen, R. Robert, and an International Space Science Institute ISSI-Team, Astrophysical and Astrochemical Insights into the Origin of Life, Rep. Prog. Phys. 65, 1427 (2002). Quote courtesy of IOP Publishing, Ltd., and of P. Ehrenfreund. DOI: 10.1088/0034-4885/65/10/202ADSCrossRefGoogle Scholar
  2. 2.
    R.N. Boyd, An Introduction to Nuclear Astrophysics, Univ. Chicago Press, Chicago, 2008CrossRefGoogle Scholar
  3. 3.
    Y. Shinnaka, H. Kawakita, H. Kobayashi, E. Jehin, J. Manfroid, D. Hutsemekers, and C. Arpigny, Ortho-to-Para, Abundance, Ratio (OPR) of Ammonia in 15 Comets: OPRs of Ammonia Versus 14  N/15N Ratios in CN. Astrophys. J. 260, 141 (1982)CrossRefGoogle Scholar
  4. 4.
    K. Kvenvolden, J. Lawless, K. Pering, E. Peterson, J. Flores, C. Ponnamperuma, I.R. Kaplan, and C. Moore, Evidence for Extraterrestrial Amino-Acids and Hydrocarbons in the Murchison Meteorite, Nature 228, 923 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    M.H. Engel and B. Nagy, Distribution and Enantiomeric Composition of Amino Acids in the Murchison Meteorite, Nature 296, 837 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    J.L. Bada, J.R. Cronin, M-S. Ho, K.A. Kvenvolden, J.G. Lawless, S.L. Miller, J. Oro, and S. Steinberg, On the Reported Optical Activity of Amino Acids in the Murchison Meteorite, Nature 301, 494 (1983)Google Scholar
  7. 7.
    J.R. Cronin and S. Pizzarello, Enantiomeric Excesses of Meteoritic Amino Acids, Science Magazine 275, 951 (1997)ADSGoogle Scholar
  8. 8.
    S.F. Mason and G.E. Tranter, The Electroweak Origin of Biomolecular Handedness, Proc. R. Soc. London A397, 45 (1985)ADSGoogle Scholar
  9. 9.
    S.F. Mason and G.E. Tranter, Energy Inequivalence of Peptide Enantiomers from Parity Non-Conservation, J. Chem. Soc. Chem. Comm. 117 (1983)Google Scholar
  10. 10.
    S.F. Mason and G.E. Tranter, The Parity-Violating Energy Difference Between Enantiomeric Molecules. Molec. Phys. 53, 1091 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    S.F. Mason, Origins of Biomolecular Handedness, Nature 311, 19 (1984)ADSCrossRefGoogle Scholar
  12. 12.
    G.E. Tranter, Parity Violating Energy Differences of Chiral Molecules and the Origin of Biomolecular Chirality, Nature 318, 172 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    G.E. Tranter, The Parity Violating Energy Difference Between Enantiomeric Reactions, Chem. Phys. Lett. 115, 286 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    G.E. Tranter, The Parity Violating Energy Difference Between the Enantiomers of α-Amino Acids, Chem. Phys. Lett. 120, 93 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    G.E. Tranter, Parity Violating Energy Differences and the Origin of Biomolecular Chirality, J. Theor. Biol. 119, 467 (1986)CrossRefGoogle Scholar
  16. 16.
    G.E. Tranter, The Enantio-Preferential Stabilization of D-Ribose from Parity Violation, Chem.. Phys. Lett. 135, 279 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    D. Glavin and J. Dworkin, Enrichment of the Amino Acid L-isovaline by Aqueous Alternation on CI and CM Meteorite Parent Bodies, Proc. National Acad. Sciences  10.1073/pnas 0811618106 (2009)
  18. 18.
    Z. Martins, O. Botta, M.L. Fogel, M.A. Sephton, D.P. Glavin, J.S. Watson, J.P. Dworkin, A.W. Schwartz, and P. Ehrenfreund, Extraterrestrial Nucleobases in the Murchison Meteorite, Earth and Planetary Science Letters 270, 130 (2008). Use of quote courtesy of ElsevierADSCrossRefGoogle Scholar
  19. 19.
    M.P. Callahan, K.E. Smith, H.J. Cleaves, II, J. Ruzicka, J.C. Stern, D.P. Glavin, C.H. House, and J.P. Dwoprkin, Proc. Nat. Acad. Sci., PNAS Early Edition 13995 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    J.G. Lawless, K./a. Kvenvolden, E. Peterson, C. Ponnamperuma, and C. Moore, Amino Acids Indigenous to the Murray Meteorite, Science 173, 626 (1971)ADSCrossRefGoogle Scholar
  21. 21.
  22. 22.
    C.D.K. Herd, A. Blinova, D.N. Simkus, Y. Huang, R. Tarozo, C.M. O’D. Alexander, R. Gyngard, L.R. Nittler, G.D. Cody, M.L. Fogel, Y. Kebukawa, A.L.D. Kilcoyne, R.W. Hilts, G.F. Slater, D.P. Glavin, J.P. Dworkin, M.P. Callahan, J.E. Elsila, B.T. De Gregorio, and R.M. Stroud, Origin and Evolution of Prebiotic Organic Matter As Inferred from the Tagish Lake Meteorite, Science 332, 1304 (2011)Google Scholar
  23. 23.
    J.E. Elsila, D.P. Glavin and J.P. Dworkin, Cometary Glycine Detected in Samples Returned by Stardust, Meteoritics and Planetary Science 44, 1323 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    A. Fujiwara, j. Kawaguchi, D.K. Yeomans, M. Abe, T. Mukai, T. Okada, J. Saito, H. Yano, M. Yoshikawa, D.J. Scheeres, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, H. Ikeda, T. Kominato, H. Miyamoto, A.M. Nakamura, R. Nakamura, S. Sasaki, and K. Uesugi, The Rubble-pile Asteroid Itokawa as Observed by Hayabusa, Science 312, 1330 (2006)Google Scholar
  25. 25.
    J. Saito, H. Miyamoto, R. Nakamujra, M. Ishiguro, T. Michikami, A.M. Nakamura, H. Demura, S. Sasaki, N. Hirata, C. Honda, A. Yamamoto, Y. Yokota, T. Fuse, F. Yoshida, D.J. Tholen, R.W. Gaskell, T. Hashimoto, T. Kubota, Y. Higuchi, T. Nakamura, P. Smith, K. Niraoka, T. Honda, S. Kobayashi, M. Furuya, N. Matsumoto, E. Nemoto, A. Yukishita, K. Kitazato, B. Dermawan, A. Sogame, J. Terazono, C. Shinohara, and H. Akiyama, Detailed Images of Asteroid 25143 Itokawa from Hayabusa, Science 312, 1341 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    H. Yano, T. Kubota, H. Miyamoto, T. Okada, D. Scheeres, Y. Takagi, K. Yoshida, M. Abe, S. Abe, O. Barnouin-Jha, A. Fujiwara, S. Hasegawa, T. Hashimoto, M. Ishiguro, M. Kato, J. Kawaguchi, T. Mukai, J. Saito, S. Sasaki, and M. Yoshikawa, Touchdown of the Hayabush Spacecraft at the Muses Sea on Itokawa, Science 312, 1350 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    W.H.-P. Thiemann and U. Meierhenrich, ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids, Origins of Life and Evolution of the Biosphere 31, 199 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    R.G. Strom, R. Malhotra, T. Ito, F. Yoshida, and D.A. Kring, The Origin of Planetary Impactors in the Inner Solar System, Science 309, 1847 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    S.A. Wilde, J.W. Valley, W.H. Peck, and C.M. Graham, Evidence from Detrital Zircons for the Existence of Continental Crust and Oceans on Earth 4.4 Gyr Ago, Nature 409, 175 (2001)Google Scholar
  30. 30.
    J.W. Schopf, A.B. Kudryavtsev, D.G. Agresti, T.J. Wdowiak, and A.D. Czaja, Laser-Raman Imagery of Earth’s Earliest Fossils, Nature 416, 73 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    P. Davies, The Eerie Silence: Renewing Our Search for Alien Intelligence, Houghton, Miflin, Harcourt, NY, NY 2010CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Ohio State University (Emeritus)WindsorUSA

Personalised recommendations