Trimaran Vessels and Parametric Roll

  • Gabriele BulianEmail author
  • Alberto Francescutto


Parametric roll can occur in case of trimaran vessels, in particular when the outriggers have limited draught and/or limited transversal separation. Due to the significant nonlinearities of the restoring moment and due to the often complex shape of the metacentric height in waves for this type of ships, parametric roll clearly shows quite peculiar characteristics. Starting by the description of a simplified 1-DOF nonlinear mathematical model for parametric roll in longitudinal regular waves the paper then describes how the Floquet theory can be directly applied to the linearized model in order to determine the instability regions for the upright position. An example of calculation of stability map for the upright position is provided. Also another example for prediction of rolling amplitude in the nonlinear range to highlight the peculiar aspects relevant to the considered trimaran configuration is discussed. In both cases experimental data are also reported for comparison. Finally the paper describes how the position of the outriggers can be optimally chosen in order to minimize the variations of metacentric height in waves.


Wave Crest Monodromy Matrix Forward Speed Floquet Theory Parametric Roll 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to express their appreciation to those students which provided contributions for the present paper during their thesis works: Mr. Luca Boaro, Mr. Giovanni Dall’Aglio, Mr. Fabio Fucile, and Mr. Marco Sinibaldi.


  1. 1.
    American Bureau of Shipping (ABS): Guide for the assessment of parametric roll resonance in the design of container carriers, September 2004 (Updated June 2008)Google Scholar
  2. 2.
    Begovic, E., Bertorello, C., Caldarella, S., Cassella, P.: High Speed Multihull Craft for Medium distance Marine Transportation. Proc. High Speed Craft: Design & Operation, 17–18 November, RINA, London, UK (2004)Google Scholar
  3. 3.
    Bulian, G.: Nonlinear Parametric Rolling in Regular Waves – A General Procedure for the Analytical Approximation of the GZ Curve and Its Use in Time Domain Simulations. Ocean Engineering, Vol. 32, No. 3–4, March, pp. 309–330. doi:10.1016/j.oceaneng.2004.08.008 (2005)Google Scholar
  4. 4.
    Bulian, G.: Development of analytical nonlinear models for parametric roll and hydrostatic restoring variations in regular and irregular waves. Ph.D. Thesis, DINMA – University of Trieste, March ( (2006)
  5. 5.
    Bulian, G., Francescutto A.: Theoretical Prediction and Experimental Verification of Multiple Steady States for Parametric Roll. Proc. of the 10th International Ship Stability Workshop, 23–25 March, Daejeon, Republic of Korea, pp. 31–45 (2008)Google Scholar
  6. 6.
    Bulian, G., Francescutto A.: Experimental results and numerical simulations on strongly nonlinear rolling of multihulls in moderate beam seas. Proceedings of the Institution of Mechanical Engineers: Part M – Journal of Engineering for the Maritime Environment, Vol. 223, pp. 189–210, DOI: 10.1243/14750902JEME126 (2009)Google Scholar
  7. 7.
    Bulian, G., Francescutto A.: A simplified regulatory-oriented method for relative assessment of susceptibility to parametric roll inception at the early design stage. Proc. 4th International Maritime Conference on Design for Safety and 3rd Workshop on Risk-Based Approaches in the Marine Industries – Part I, 18–20 October, Trieste, Italy, pp. 93–106 (2010)Google Scholar
  8. 8.
    Bulian, G., Francescutto, A., Fucile, F.: Numerical and experimental investigation on the parametric rolling of a trimaran ship in longitudinal regular waves. Proc. 10th International Conference on Stability of Ships and Ocean Vehicles (STAB2009), St. Petersburg, 22–26 June, pp. 567–582 (2009)Google Scholar
  9. 9.
    Bulian, G., Francescutto, A., Fucile, F.: Study of trimaran stability in longitudinal waves. Ships and Offshore Structures, First published on: 31 August 2010 (iFirst), DOI: 10.1080/17445302.2010.507494 (2010)Google Scholar
  10. 10.
    Chacón, J. R., Ollero, P., Gee, N., Dudson, E.: The Pentamaran Ro-Ro: the Solution for Modal Shift from Land to Sea. Proc. Design and Operation of Trimaran Ships, 29–30 April, RINA, London, UK, ISBN 0-903055-99-6 (2004)Google Scholar
  11. 11.
    Courts, M.: Keynote Presentation: Trimaran Warship - The issues. Proc. Design and Operation of Trimaran Ships, 29–30 April, RINA, London, UK, ISBN 0-903055-99-6 (2004)Google Scholar
  12. 12.
    Dubrovsky, V. A., Matveev, K. I.: Concept design of outrigger ships. Proc. Design and Operation of Trimaran Ships, 29–30 April, RINA, London, UK, ISBN 0-903055-99-6 (2004)Google Scholar
  13. 13.
    Francescutto, A., Contento, G.: Bifurcations in ship rolling: experimental results and parameter identification technique. Ocean Engineering, Vol. 26, pp. 1095–1123 (1999)Google Scholar
  14. 14.
    Gee, N.: Keynote presentation: Stabilised Monohulls – Trimarans and Pentamarans – History, Evolution and the Future. Proc. Design and Operation of Trimaran Ships, 29–30 April, RINA, London, UK, ISBN 0-903055-99-6 (2004)Google Scholar
  15. 15.
    Gee, N., Dudson, E., González, J. M.: The IZAR Pentamaran – Tank Testing, Speed Loss and Parametric Rolling. Downloaded on 16 February 2009 from (2002)
  16. 16.
    Hayashi, C.: Nonlinear Oscillations in Physical Systems. New York, McGraw Hill (1964)Google Scholar
  17. 17.
    Ikeda, Y., Himeno, Y., Tanaka, N.: A Prediction Method for Ship Roll Damping. Report No. 00405 of Department of Naval Architecture – University of Osaka Prefecture, December (1978)Google Scholar
  18. 18.
    José, J. V., Saletan, E. J.: Classical Dynamics - A Contemporary Approach. Cambridge University Press, Cambridge, UK, ISBN 0-521-63636-1 (1998)Google Scholar
  19. 19.
    Nayfeh, A. H., Mook, D. T.: Nonlinear Oscillations. John Wiley & Sons, Inc. (1979)Google Scholar
  20. 20.
    Neves, M. A. S., Rodríguez, C. A.: Nonlinear Aspects of Coupled Parametric Rolling in Head Seas. Proc. 10th International Symposium on Practical Design of Ships and Other Floating Structures, Houston (2007)Google Scholar
  21. 21.
    Oh, I. G., Nayfeh, A. H., Mook, D. T.: A theoretical and experimental investigation of indirectly excited roll motion in ships. Philosophical Transactions of the Royal Society, Mathematical, Physical and Engineering Sciences 358, pp. 1853–1881 (2000)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Simakhina, S. V.: Stability Analysis of Hill’s equation. Department of Mathematics, Statistics and Computer Science – University of Illinois – Chicago, July 20, available at (2003)
  23. 23.
    Simakhina, S. V., Tier, C.: Computing the stability regions of Hill’s equation. Applied Mathematics and Computation, Vol. 162, pp. 639–660 (2005)Google Scholar
  24. 24.
    Spyrou, K. J.: Designing against parametric instability in following seas. Ocean Engineering, Vol. 27, pp. 625–653 (2000)Google Scholar
  25. 25.
    Spyrou, K. J.: Design Criteria for Parametric Rolling. Ocean Engineering International, Vol. 9, No. 1, pp. 11–27 (2005)Google Scholar
  26. 26.
    Turhan, Ö., Bulut G.: Dynamic stability of rotating blades (beams) eccentrically clamped to a shaft with fluctuating speed. Journal of Sound and Vibration, Vol. 280, pp. 945–964 (2005)Google Scholar
  27. 27.
    Van Walree, F., de Jong, P.: Time domain simulations of the behaviour of fast ships in oblique seas. Proc. 6th Osaka Colloquium on Seakeeping and Stability of Ships (OC2008), 26–29 March, Osaka, Japan. pp. 383–391 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Naval ArchitectureUniversity of TriesteTriesteItaly

Personalised recommendations