Advertisement

Complex polymers

  • Arantxa ArbeEmail author
  • Juan Colmenero
Chapter
  • 1.3k Downloads
Part of the Neutron Scattering Applications and Techniques book series (NEUSCATT)

Abstract

For linear homopolymers, the power of neutron scattering has largely been demonstrated by characterization at the microscopic level of a large variety of dynamical processes including vibrations, side-group motions, structural relaxation, Rouse dynamics and reptation. Nowadays, technological demands require understanding of the dynamics in more complex polymer systems, like polymer blends or nano- or meso-phase segregated polymers. A key question to be answered is how does this increasing complexity affect the different processes present in simple polymers. Particularly in the case of such complex materials, neutron scattering offers a unique tool for unravelling dynamic information, since in combination with isotopic labelling it allows selectivity for the component dynamics. We illustrate the potential of this technique in the study of (i) polymer blends with differing degrees of dynamic asymmetry and (ii) a family of homopolymers with long alkyl side-groups that show nano-segregation of main chains and side groups. Under certain conditions, intriguing confinement effects that emerge in both kinds of systems are revealed by neutron scattering.

Keywords

Neutron Scattering Polymer Blend Dynamic Structure Factor Dynamic Heterogeneity Neutron Spin Echo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank all our collaborators contributing to the research of our group in this subject. We also express our gratitude to Prof. D. Richter for the fruitful collaboration over many years addressing this kind of problems, and to our colleagues at the different neutron facilities. We acknowledge support by the European Commission NoE SoftComp, Contract NMP3-CT-2004-502235, the “Donostia International Physics Center”, the projects MAT2007-63681, IT-436-07 (GV) and the Spanish Ministerio de Educación y Ciencia (Grant No. CSD2006-53).

References

  1. 1.
    Frick B, Richter D (1995) The microscopic basis of the glass transition in polymers from neutron scattering studies. Science 267:1939–1945CrossRefGoogle Scholar
  2. 2.
    Colmenero J, Moreno AJ, Alegría A (2005) Neutron scattering investigations on methyl group dynamics in polymers. Prog Polym Sci 30:1147–1184CrossRefGoogle Scholar
  3. 3.
    Richter D, Monkenbusch M, Arbe A, Colmenero J (2005) Neutron spin echo in polymer systems. Adv Polym Sci 174. Springer Verlag, Berlin Heidelberg New YorkGoogle Scholar
  4. 4.
    Richter D, Monkenbusch M, Willner L, Arbe A, Colmenero J, Farago B (2004) Direct observation of the crossover from α-relaxation to Rouse dynamics in a polymer melt. Europhys Lett 66:239–245CrossRefGoogle Scholar
  5. 5.
    Pérez Aparicio R, Arbe A, Colmenero J, Frick B, Willner L, Richter D, Fetters LJ (2006) Quasielastic neutron scattering study on the effect of blending on the dynamics of head-to-head poly(propylene) and poly(ethylene-propylene). Macromolecules 39:1060–1072CrossRefGoogle Scholar
  6. 6.
    Mukhopadhyay R, Alegría A, Colmenero J, Frick B (1998) Effect of blending on the methyl side group dynamics in poly(vinyl methyl ether). J Non-Cryst Solids 235–237:233CrossRefGoogle Scholar
  7. 7.
    Genix A-C, Arbe A, Alvarez F, Colmenero J, Willner L, Richter D (2005) Dynamics of poly(ethylene oxide) in a blend with poly(methyl methacrylate): A quasielastic neutron scattering and molecular dynamics simulations study. Phys Rev E 72:031808(1)–(20)Google Scholar
  8. 8.
    Chahid A, Alegría A, Colmenero J (1994) Methyl group dynamics in poly(vinyl methyl ether). A rotation rate distribution model. Macromolecules 27:3282–3288Google Scholar
  9. 9.
    Cendoya I, Alegría A, Alberdi JM, Colmenero J, Grimm H, Richter D, Frick B (1999) Effect of blending on the PVME dynamics. A dielectric, NMR, and QENS investigation. Macromolecules 32:4065–4078CrossRefGoogle Scholar
  10. 10.
    Urakawa O, Fuse Y, Hori H, Tran-Cong Q, Yano O (2001) A dielectric study on the local dynamics of miscible polymer blends: poly(2-chlorostyrene)/poly(vinyl methyl ether). Polymer 42:765–773CrossRefGoogle Scholar
  11. 11.
    Dionísio M, Fernandes AC, Mano JF, Correia NT, Sousa RC (2000) Relaxation studies in PEO/PMMA blends. Macromolecules 33:1002–1011CrossRefGoogle Scholar
  12. 12.
    Arbe A, Alegría A, Colmenero J, Hoffmann S, Willner L, Richter D (1999) Segmental dynamics in poly(vinylethylene)/polyisoprene miscible blends revisited. A neutron scattering and broad-band dielectric spectroscopy investigation. Macromolecules 32:7572–7581Google Scholar
  13. 13.
    Colmenero J, Arbe A (2007) Segmental dynamics in miscible polymer blends: recent results and open questions. Soft Matter 3:1474–1485CrossRefGoogle Scholar
  14. 14.
    Hoffmann S, Willner L, Richter D, Arbe A, Colmenero J, Farago B (2000) Origin of dynamic heterogeneities in miscible polymer blends: A quasielastic neutron scattering study. Phys Rev Lett 85:772–775CrossRefGoogle Scholar
  15. 15.
    Lodge TP, Mcleish TCB (2000) Self-concentrations and effective glass transition temperatures in polymer blends. Macromolecules 33:5278–5284CrossRefGoogle Scholar
  16. 16.
    Tanaka H (2000) Viscoelastic phase separation. J Phys Cond Matter 12:R207–R264CrossRefGoogle Scholar
  17. 17.
    Proceedings of the 3rd international workshop on dynamics in confinement. In: Koza M, Frick B, Zorn R (eds.) Eur Phys J Special Topics 141Google Scholar
  18. 18.
    Genix AC, Arbe A, Arrese-Igor S, Colmenero J, Richter D, Frick B, Deen PP (2008) Neutron scattering investigation of a diluted blend of poly(ethylene oxide) in polyethersulfone. J Chem Phys 128:184901(1)–(11)Google Scholar
  19. 19.
    Tyagi M, Arbe A, Colmenero J, Frick B, Stewart JR (2006) Dynamic confinement effects in polymer blends. A quasielastic neutron scattering study of the dynamics of poly(ethylene oxide) in a blend with poly(vinyl acetate). Macromolecules 39:3007–3018CrossRefGoogle Scholar
  20. 20.
    Lorthioir C, Alegría A, Colmenero J (2003) Out of equilibrium dynamics of poly vinyl methyl ether segments in miscible polystyrene–polyvinyl methyl ether blends. Phys Rev E 68:031805(1)–(9)Google Scholar
  21. 21.
    Tyagi M, Arbe A, Alegría A, Colmenero J, Frick B (2007) Dynamic confinement effects in polymer blends. A quasielastic neutron scattering study of the slow component in the blend poly(vinyl acetate)/poly(ethylene oxide). Macromolecules 40:4568–4577CrossRefGoogle Scholar
  22. 22.
    García Sakai V, Maranas JK, Chowdhuri Z, Peral I, Copley JRD (2005) Miscible blend dynamics and the length scale of local compositions. J Polym Sci Part B Polym Phys 43:2914–2923CrossRefGoogle Scholar
  23. 23.
    Farago B, Chen C, Maranas JK, Kamath S, Colby RH, Pasquale AJ, Long TE (2005) Collective motion in poly(ethylene oxide)/poly(methylmethacrylate) blends. Phys Rev E 72:031809(1)–(11)Google Scholar
  24. 24.
    Niedzwiedz K, Wischnewski A, Monkenbusch M, Richter D, Genix A-C, Arbe A, Colmenero J, Strauch M, Straube E (2007) Polymer chain dynamics in a random environment: heterogeneous mobilities. Phys Rev Lett 98:168301(1)–(4)Google Scholar
  25. 25.
    Moreno AJ, Colmenero J (2008) Entanglement-like chain dynamics in non-entangled polymer blends with large dynamic assymetry. Phys Rev Lett (1)–(4)Google Scholar
  26. 26.
    Moreno AJ, Colmenero J (2006) Is there a higher-order mode coupling transition in polymer blends? J Chem Phys 124:184906(1)–(6)Google Scholar
  27. 27.
    Götze W, Sperl M (2002) Logarithmic relaxation in glass-forming systems. Phys Rev E 66:011405(1)–(17)Google Scholar
  28. 28.
    Zorn R, Hartmann L, Frick B, Richter D, Kremer F (2002) Inelastic neutron scattering experiments on the dynamics of a glass-forming material in mesoscopic confinement. J Non Cryst Solids 307–310:547–554CrossRefGoogle Scholar
  29. 29.
    Schönhals A, Goering H, Schick Ch, Frick B, Zorn R (2005) Polymers in nanoconfinement: What can be learned from relaxation and scattering experiments? J Non Cryst Solids 351:2668–2677CrossRefGoogle Scholar
  30. 30.
    Gallo P (2000) Single particle slow dynamics of confined water. Phys Chem Chem Phys 2:1607–1611CrossRefGoogle Scholar
  31. 31.
    Swenson J, Bergman R, Longeville S (2001) A neutron spin-echo study of confined water. J Chem Phys 115:11299–11305CrossRefGoogle Scholar
  32. 32.
    Beiner M (2001) Relaxation in Poly(alkyl methacrylate)s: Crossover region and nanophase separation. Macromol Rapid Commun 22:869–895CrossRefGoogle Scholar
  33. 33.
    Beiner M, Huth H (2003) Nanophase separation and hindered glass transition in side-chain polymers. Nat Mat 2:595–599CrossRefGoogle Scholar
  34. 34.
    Arbe A, Genix A-C, Colmenero J, Richter D, Fouquet P (2008) Anomalous relaxation of self-assembled alkyl nanodomains in high-order poly(n-alkyl methacrylates). Soft Matter 4:1792–1795CrossRefGoogle Scholar
  35. 35.
    Arbe A, Colmenero J (2009) Characterization of the ‘simple-liquid’ state in a polymeric system. Self and pair correlation functions. Phys Rev E 80:041805(1)–(13)Google Scholar
  36. 36.
    Lorthioir C, Alegría A, Colmenero J, Deloche B (2004) Heterogeneity of the segmental dynamics of poly(dimethylsiloxane) in a diblock lamellar mesophase: dielectric relaxation investigations. Macromolecules 37:7808–7817CrossRefGoogle Scholar
  37. 37.
    Arbe A, Genix A-C, Arrese-Igor S, Colmenero J, Richter D (2010) Dynamics in poly(n-alkyl methacrylates): a neutron scattering, calorimetric, and dielectric study. Macromolecules 43:3107–3119CrossRefGoogle Scholar
  38. 38.
    Moreno A.J, Arbe A, Colmenero J (2011) Structure and dynamics of self-assembled comb copolymers: comparison between simulations of a generic model and neutron scattering experiments. Macromolecules 44:1695–1706CrossRefGoogle Scholar
  39. 39.
    Brey JJ, Prados A (2001) Slow logarithmic relaxation in models with hierarchically constrained dynamics. Phys Rev E 63:021108(1)–(4)Google Scholar
  40. 40.
    García Sakai V, Arbe A (2009) Quasielastic neutron scattering in soft matter. Curr Opin Colloid Interface Sci 14:381–390CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Centro de Física de Materiales (CSIC-UPV/EHU) - Materials Physics Center (MPC)San SebastiánSpain
  2. 2.Donostia International Physics CenterSan SebastiánSpain

Personalised recommendations