Understanding the Stability of Micellar Systems of Interest for the Study of Glasses, Freezing and Soft Confinement

  • Tinka SpehrEmail author
  • Bernhard Frick
Part of the Neutron Scattering Applications and Techniques book series (NEUSCATT)


Micellar droplets, or more precisely, swollen reverse micelles of water in oil mediated by surfactants, are of large interest for the study of supercooling phenomena, glass formation and freezing in soft confining environment. They offer the advantage that within certain limits, one can tune parameters such as droplet size, droplet concentration or membrane elasticity. However, the complexity of these systems calls for a detailed characterization of their stability and of the self-dynamics, prior to the investigation of possible confinement effects on the dynamics of components enclosed in such systems.In this chapter we first briefly introduce micellar systems, review experimental work related to these systems in the supercooled state and present some key scattering experiments. We then present more recent results from low temperature structural investigations on the droplet phase of water-in-oil microemulsions with AOT (sodium bis[ethylhexyl] sulfosuccinate) as the surfactant, performed to define their range of structural stability. We show that at low temperatures the droplets shrink to a size where they still contain water and that with decreasing droplet size the stability range extends towards lower temperatures. We illustrate how quasi-elastic neutron scattering (QENS) studies using a range of spectrometers help attain a better understanding of the complex dynamics in these systems, which ranges from the local dynamics of the constituents to the droplet shape fluctuations and droplet diffusion. Our experimental results indicate that the water dynamics are slowed down in these systems.We also review recent QENS experiments on glass-forming liquids in soft confinement and compare them with similar studies in hard confinement. In contrast to confined water the investigated confined glass formers show an acceleration in soft confinement. All the described investigations take advantage of the possibility to vary the neutron scattering contrast via selective deuteration by H/D exchange on some of the constituents, water or other enclosed liquids, surfactants and oil.


Droplet Size Propylene Glycol Reverse Micelle Microemulsion System Incoherent Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abel S, Sterpone F, Bandyopadhyay S, Marchi MJ (2004) Molecular modeling and simulations of AOT-Water reverse micelles in isooctane: structural and dynamic properties. J Phys Chem B 108:19458–19466CrossRefGoogle Scholar
  2. 2.
    Alba-Simionesco C, Teixeira J, Angell CA (1989) Structural characterisation of glass forming oil/water microemulsions by neutron scattering. J Chem Phys 91:395CrossRefGoogle Scholar
  3. 3.
    Aliotta F, Fontanella M, Lechner R, Pieruccini M, Rufe B, Vasi C (2002) Percolative phenomena in lecithin reverse micelles: the role of water. Colloid Polym Sci 280:193–202CrossRefGoogle Scholar
  4. 4.
    Angell CA, Kadiyala RK, MacFarlane DR (1984) Glass forming microemulsions. J Phys Chem 88:4593Google Scholar
  5. 5.
    Bee M (1984) Quasielastic neutron scattering: principles and applications. In: Solid state chemistry, biology and materials science. Adam Hilger, Philadelphia, USA (1988)Google Scholar
  6. 6.
    Blochowicz T, Gouirand E, Fricke A, Spehr T, Stühn, B, Frick B (2009) Accelerated dynamics of supercooled glycerol in soft confinement. Chem Phys Lett 475:171–174CrossRefGoogle Scholar
  7. 7.
    Boned C, Peyrelasse J, Moha-Ouchane M (1986) Characterization of water dispersion in water/AOT microemulsions using differential scanning calorimetry. J Phys Chem 90:634–637CrossRefGoogle Scholar
  8. 8.
    Brodskaya E, Mudzhikova G (2006) Molecular dynamics simulation of aot reverse micelles. Mol Phys 104:3635–3643CrossRefGoogle Scholar
  9. 9.
    De T, Maitra A (1995) Solution behaviour of aerosol OT in non-polar solvents. Adv Colloid Interface Sci 59:95–193CrossRefGoogle Scholar
  10. 10.
    Delord P, Larche FC (1984) In: Luisi P, Straub BE (eds) Reverse micelles – Biological and technological relevance of amphiphilic structures in apolar media. Plenum Press, New York and London, p 137CrossRefGoogle Scholar
  11. 11.
    Van Dijk M, Joosten J, Levine Y, Bedeaux D (1989) Dielectric study of temperature-dependent aerosol OT/water/isooctane microemulsion structure. J Phys Chem 93:2506–2512.CrossRefGoogle Scholar
  12. 12.
    Dokter A, Woutersen S, Bakker H (2006) Inhomogeneous dynamics in confined water nanodroplets. PNAS 103:15355–15358CrossRefGoogle Scholar
  13. 13.
    Dynamics in Confinement (2000) In: Frick B, Büttner H, Zorn R (eds), vol. 10 (EDP SCIENCES, Les Ulis, France, 2000). Frick B, Koza M, Zorn R (2003) Euro Phys J E 12, 3. Special Topics on Dynamics in Confinement (2007). In: Koza M, Frick B, Zorn R (eds), Eur Phys J–ST 141, Grenoble, 2007. Special Topics on “Dynamics in Confinement” (2010). In: Zorn R, van Eijck L, Koza M, Frick B (eds), Eur Phys J 189(1).Google Scholar
  14. 14.
    Faeder J, Ladanyi BM (2000) Molecular dynamics simulations of the interior of aqueous reverse micelles. J Phys Chem 104:1033–1046CrossRefGoogle Scholar
  15. 15.
    Farago B, Richter D, Huang JS, Safran SA, Milner ST (1990) Shape and size fluctuations of microemulsion droplets: the role of cosurfactant. Phys Rev Lett 65:3348–3351CrossRefGoogle Scholar
  16. 16.
    Farago B, Gradzielski M (2001) The effect of charge density of microemulsion droplets on the bending elasticity of the amphiphilic film. J Chem Phys 114:10105–10122CrossRefGoogle Scholar
  17. 17.
    Fletcher P, Robinson B, Tabony J (1986) A quasielastic neutron scattering study of water-in-oil microemulsions stabilised by aerosol-OT. J Chem Soc Faraday Trans 1(82):2311-2321CrossRefGoogle Scholar
  18. 18.
    Freda M, Onori G, Paciaroni A, Santucci A (2003) Hydration-dependent internal dynamics of reverse micelles: a quasielastic neutron scattering study. Phys Rev E 68:021406CrossRefGoogle Scholar
  19. 19.
    Grillo I (2008) Small angle neutron scattering and applications in soft matter. In: Borsali R, Pecora R (eds) Soft matter characterization, SpringerGoogle Scholar
  20. 20.
    Harpham MR, Ladanyi BM, Levinger NE, Herwig KW (2004) Water motion in reverse micelles studied by quasielastic neutron scattering and molecular dynamics simulations. J Phys Chem 121:7855–7868CrossRefGoogle Scholar
  21. 21.
    Hauser H, Haering G, Pande A, Luisi P (1989) Interaction of water with sodium bis(2-ethyl-1-hexyl) sulfosuccinate in reverse micelles. J Phys Chem 93:7869–7876CrossRefGoogle Scholar
  22. 22.
    He F, Wang LM, Richert R (2007) Confined viscous liquids: Interfacial versus finite size effects. Euro Phys J – Special Topics 141Google Scholar
  23. 23.
    Helfrich W (1978) Steric interaction of fluid membranes in multlayer systems. Z Naturforsch Sect A-A J Phys Sci 33:305–315Google Scholar
  24. 24.
    Hellweg T (2009) Scattering techniques to study the microstructure of microemulsions. In: Stubenrauch C (eds) Microemulsions, WileyCrossRefGoogle Scholar
  25. 25.
    Hirai M, Kawai-Hirai R, Iwase H, Kawabata Y, Takeda T (2002) Effects of proteins on dynamics of water-in-oil microemulsions. Appl Phys A 74:1254–1256CrossRefGoogle Scholar
  26. 26.
    Hoar T, Schulman J (1943) Transparent water in oil dispersions: the oleopathic hydromicelle. Nature 152:102–103CrossRefGoogle Scholar
  27. 27.
    Holmberg K, Jönsson B, Kronberg B, Lindman B (2003) Surfactants and polymers in aqueous solution. John Wiley & Sons, Ltd., West Sussex, EnglandGoogle Scholar
  28. 28.
    Huang J, Milner S, Farago B, Richter D (1987) Study of dynamics of microemulsion droplets by neutron spin-echo spectroscopy. Phys Rev Lett 59:2600–2603CrossRefGoogle Scholar
  29. 29.
    Huwe A, Kremer F, Behrens P, Schwieger W, Molecular dynamics in confining space: From the single molecule to the liquid state. Phys Rev Lett 82:2338Google Scholar
  30. 30.
    Kawabata Y, Seto H, Nagao M, Takeda T (2002) Temperature- and pressure-dependences of shape fluctuations in a ternary microemulsion system. J Neutron Res 103:131–136CrossRefGoogle Scholar
  31. 31.
    Kawabata Y, Nagao M, Komura S, Takeda T, Schwahn D, Nobutou H (2004) Temperature and pressure effects on the bending modulus of monolayers in a ternary microemulsion. Phys Rev Lett 925:056103CrossRefGoogle Scholar
  32. 32.
    Kitchens M, Bossev D, Roberts C (2006) Solvent effects on AOT reverse micelles in liquid and compressed alkanes investigated by neutron-spin-echo spectroscopy. J Phys Chem B 110:20392–20400CrossRefGoogle Scholar
  33. 33.
    Kotlarchyk C, Stevens R, Huang J (1988) Study of Schultz distribution to model polydispersity of microemulsion droplets. J Phys Chem 92:1533–1538CrossRefGoogle Scholar
  34. 34.
    Levinger NE (2002) Water in confinement. Science 298:1722Google Scholar
  35. 35.
    Le Quellec C, Dosseh G, Audonnet F, Brodie-Linder N, Alba-Simionesco C, Haeussler W, Frick B (2007) Influence of surface interactions on the dynamics of the glass former ortho-terphenyl confined in nanoporous silica. Euro Phys J – Special Topics 141:11–18CrossRefGoogle Scholar
  36. 36.
    Mezei F (1980) Neutron Spin Echo. Lecture Notes in Physics, vol. 128, Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  37. 37.
    Milner S, Safran S (1987) Dynamical fluctuations of droplet microemulsions and vesicles. Phys Rev A 36Google Scholar
  38. 38.
    Munson CA, Baker GA, Baker SN, Bright FV (2004) Effects of subzero temperatures on fluorescent probes sequestered within aerosol-OT reverse micelles. Langmuir 20:1551CrossRefGoogle Scholar
  39. 39.
    Nucci N, Vanderkooi J (2005) Temperature dependence of hydrogen bonding and freezing behavior of water in reverse micelles. J Phys Chem B 109:18301CrossRefGoogle Scholar
  40. 40.
    Piletic I, Moilanen D, Spry D, Levinger N, Fayer M (2006) Testing the core-shell model of nanoconfined water in reverse micelles using linear and nonlinear IR spectroscopy. J Phys Chem A 110:4985CrossRefGoogle Scholar
  41. 41.
    Quist P-O, Halle B (1988) Water dynamics and aggregate structure in reversed micelles at sub-zero temperatures. J Chem Soc Faraday Trans 184:1033CrossRefGoogle Scholar
  42. 42.
    Safran S (1983) Fluctuations of spherical microemulsions. J Phys Chem 78:2073–2076CrossRefGoogle Scholar
  43. 43.
    Schönhals A, Göring H, Schick C, Frick B, Zorn R (2003) Glassy dynamics of polymers confined to nanoporous glasses revealed by relaxational and scattering experiments. Euro Phys J E 12:173CrossRefGoogle Scholar
  44. 44.
    Schulz P-C (1998) DSC analysis of the state of water in surfactant-based microstructures. J Therm Anal Calorim 51:135–149CrossRefGoogle Scholar
  45. 45.
    Seki K, Komura S (1995) Viscoelasticity of vesicle dispersions. Phys A 219:235–289CrossRefGoogle Scholar
  46. 46.
    Senatra D, Zhou Z, Pieraccini L (1987) A study of the properties of water-in-oil microemulsions in the subzero temperature range by differential scanning calorimetry. Prog Colloid Polym Sci 73:66–75CrossRefGoogle Scholar
  47. 47.
    Spehr T, Frick B, Grillo I, Stühn B (2008) Supercooling of water confined in reverse micelles. J Phys Condens Mat 20:104204CrossRefGoogle Scholar
  48. 48.
    Simorellis A, VanHorn W, Flynn P (2006) Dynamics of low temperature induced water shedding from AOT reverse micelles. J Am Chem Soc 128:5082–5090CrossRefGoogle Scholar
  49. 49.
    Spehr T, Frick B, Grillo I, Falus P, Müller M, Stühn B (2009) Structure and dynamics of reverse micelles containing supercooled water investigated by neutron scattering. Phys Rev E 79:031404CrossRefGoogle Scholar
  50. 50.
    Spehr T (2010) Water dynamics in soft confinement – Neutron scattering investigations on reverse micelles. Ph.D. thesis, Technische Universität Darmstadt (2010)Google Scholar
  51. 51.
    Spehr T, Frick B, Zamponi M, Stühn B (2011) Dynamics of water confined to reverse AOT micelles. Soft Matter 7:5745–5755CrossRefGoogle Scholar
  52. 52.
    In: Stubenrauch C (ed) Microemulsions. Background, new concepts, applications, perspectives. John Wiley & Sons, UKGoogle Scholar
  53. 53.
    Tabony J, Llor A, Drifford M (1983) Quasielastic neutron scattering measurements of monomer molecular motions in micellar aggregates. Colloid Polym Sci 261:938–946CrossRefGoogle Scholar
  54. 54.
    Tabony J (1985) Quasielastic neutron scattering measurements of molecular motions in micelles and microemulsions. Chem Phys Lett 113:75–81CrossRefGoogle Scholar
  55. 55.
    Tondre C (2005) Dynamic processes in microemulsions. In: Zana R (eds) Dynamics of surfactant self-assemblies: micelles, microemulsions, vesicles and lyotropic Phases. CRC Press, HobokenGoogle Scholar
  56. 56.
    Wang LM, He F, Richert R (2004) Intramicellar glass transition and liquid dynamics in soft confinement. Phys Rev Lett 92:95701CrossRefGoogle Scholar
  57. 57.
    Zorn R, Mayorova M, Richter D, Frick B (2008) Inelastic neutron scattering study of a glass-forming liquid in soft confinement. Soft Matter 4:522–533CrossRefGoogle Scholar
  58. 58.
    Zorn R (2010) Neutron spectroscopy for confinement studies. Eur Phys J Spec Top 189(1):65–81CrossRefGoogle Scholar
  59. 59.
    Zorn R (2010) Boson peak in confined disordered systems. Phys Rev B 81:054208CrossRefGoogle Scholar
  60. 60.
    Zulauf M, Eicke HF (1979) Inverted micelles and microemulsions in the ternary system H2O/Aerosol-OT/Isooctane as studied by photon correlation spectroscopy. J Phys Chem 83:480–486CrossRefGoogle Scholar
  61. 61.
  62. 62.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institut für FestkörperphysikDarmstadtGermany
  2. 2.Institut Laue-LangevinGrenobleFrance

Personalised recommendations