Advertisement

Experimental Techniques for Studies of Dynamics in Soft Materials

  • Alexei P. SokolovEmail author
  • Victoria García Sakai
Chapter
Part of the Neutron Scattering Applications and Techniques book series (NEUSCATT)

Abstract

This chapter presents an overview of the various experimental techniques traditionally used for studies of dynamics in Soft Materials. First, we emphasize the importance of dynamics for macroscopic properties of these materials, then we compare advantages and disadvantages of the different techniques. These include mechanical and dielectric relaxation spectroscopy, NMR, light, X-ray, and neutron scattering. In particular, we discuss the advantages of neutron scattering spectroscopy. We emphasize the importance of combining neutron scattering with the other techniques for a complete analysis of the dynamics in Soft Materials.

Keywords

Nuclear Magnetic Resonance Neutron Scattering Soft Material Molecular Motion Nuclear Magnetic Resonance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was sponsored by the Division of Materials? Sciences and Engineering, DOE Office of Basic Energy Sciences.

References

  1. 1.
    Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–267CrossRefGoogle Scholar
  2. 2.
    Berthier L et al (2005) Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310:1797–1800CrossRefGoogle Scholar
  3. 3.
    Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287:627–631CrossRefGoogle Scholar
  4. 4.
    Russell EV, Israeloff NE (2000) Direct observation of molecular cooperativity near the glass transition. Nature 408:695–698CrossRefGoogle Scholar
  5. 5.
    Qiu XH, Ediger MD (2003) Length scale of dynamic heterogeneity in supercooled d-sorbitol: comparison to model predictions. J Phys Chem B 107:459–464CrossRefGoogle Scholar
  6. 6.
    Sokolov AP, Hayashi Y (2007) Breakdown of time-temperature superposition: from experiment to the coupling model and beyond. J Noncryst Solids 353:3838–3844CrossRefGoogle Scholar
  7. 7.
    Frick B, Fetters LJ (1994) Methyl group dynamics in glassy polyisoprene: a neutron backscattering investigation. Macromolecules 27:974–980CrossRefGoogle Scholar
  8. 8.
    Williams G (1975) In: Davies M (ed) Dielectric and related molecular processes, vol 2. The Chemical Society, London, p 151CrossRefGoogle Scholar
  9. 9.
    Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SWJ (2000) Relaxation in glass forming liquids and amorphous solids. Appl Phys 88:3113CrossRefGoogle Scholar
  10. 10.
    Roland CM, Hensel-Bielowka S, Paluch M, Casalini R (2005) Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure. Rep Progr Phys 68:1405–1478CrossRefGoogle Scholar
  11. 11.
    Surovtsev NV, Wiedersich J, Novikov VN, Rössler E, Sokolov AP (1998) Light scattering spectra of the fast relaxation in glasses. Phys Rev B 58:14888CrossRefGoogle Scholar
  12. 12.
    Pynn R (2009) Neutron scattering – a non-destructive microscope for seeing inside matter. Neutron applications in earth, energy and environmental sciences. Springer, New YorkGoogle Scholar
  13. 13.
    Schober H (2009) Neutron scattering instrumentation. Neutron applications in earth, energy and environmental sciences. Springer, BerlinGoogle Scholar
  14. 14.
    Cang H, Novikov VN, Fayer MD (2003) Experimental observation of a nearly logarithmic decay of the orientational correlation function in supercooled liquids on the picosecond-to-nanosecond time scales. Phys Rev Lett 90:197401CrossRefGoogle Scholar
  15. 15.
    García Sakai V, Arbe A (2009) Quasielastic neutron scattering in soft matter. Curr Opin Coll Inter Sci 14:381–390CrossRefGoogle Scholar
  16. 16.
    Farago B (2009) Recent developments and applications of NSE in soft matter. Curr Opin Coll Inter Sci 14:391–395CrossRefGoogle Scholar
  17. 17.
    Sette F, Krisch MH, Masciovecchio C, Ruocco G, Monaco G (1998) Dynamics of glasses and glass-forming liquids studied by inelastic X-ray scattering. Science 280:1550–1555CrossRefGoogle Scholar
  18. 18.
    Inoue T, Onogi T, Yao ML, Osaki KJ (1999) Viscoelasticity of low molecular weight polystyrene. Separation of rubbery and glassy components. Polymer Sci B Polymer Phys 37:389–397CrossRefGoogle Scholar
  19. 19.
    Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New YorkGoogle Scholar
  20. 20.
    Plazek DJ (1965) Temperature dependence of the viscoelastic behavior of polystyrene. J Phys Chem 69:3480CrossRefGoogle Scholar
  21. 21.
    Ngai KL, Plazek DJ (1995) Identification of different modes of molecular motion in polymers that cause thermorheological complexity. Rubber Chem Tech Rubber Rev 68:376CrossRefGoogle Scholar
  22. 22.
    Ding Y, Sokolov AP (2006) Breakdown of time temperature superposition principle and universality of chain dynamics in polymers. Macromolecules 39:3322–3326CrossRefGoogle Scholar
  23. 23.
    Liu Yee A (1998) Enhancing plastic yielding in polyestercarbonate glasses by 1,4-Cyclohexylene linkage addition. Macromolecules 31:7865CrossRefGoogle Scholar
  24. 24.
    Jho Yee A (1991) Secondary relaxation motion in bisphenol A polycarbonate. Macromolecules 24:1905CrossRefGoogle Scholar
  25. 25.
    Mahaffy RE, Park S, Gerde E, Kas J, Shih CK (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86:1777–1793CrossRefGoogle Scholar
  26. 26.
    Rief M et al (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 286:553CrossRefGoogle Scholar
  27. 27.
    Hugel T, Seitz M (2001) The study of molecular interactions by AFM force spectroscopy. Macromol Rapid Comm 22:989–1016CrossRefGoogle Scholar
  28. 28.
    Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Glassy dynamics. Contemp Phys 41:15–36CrossRefGoogle Scholar
  29. 29.
    Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, New YorkCrossRefGoogle Scholar
  30. 30.
    Hill NE (1969) Dielectric properties and molecular behaviour. Van Nostrand Reinhold, LondonGoogle Scholar
  31. 31.
    Papadopoulos P, Floudas G, Klok HA, Schnell I, Pakula T (2004) Self-assembly and dynamics of poly(γ-benzyl-l-glutamate) peptides. Biomacromolecules 5:81–91CrossRefGoogle Scholar
  32. 32.
    Shindo et al (1969) Dielectric properties of stereoregular poly(methyl methacrylates). J Polym Sci A 7:297–310CrossRefGoogle Scholar
  33. 33.
    Miura N, Hayashi Y, Mashimo S (1996) Hinge-bending deformation of enzyme observed by microwave dielectric measurement. Biopolymers 39:183–187CrossRefGoogle Scholar
  34. 34.
    Hayashi Y, Miura N, Isobe J, Shinyashiki N, Yagihara S (2000) Molecular dynamics of hinge-bending motion of IgG vanishing with hydrolysis by Papain. Biophys J 79:1023–1029CrossRefGoogle Scholar
  35. 35.
    Nandi N, Bhattacharyya K, Bagchi B (2000) Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem Rev 100:2013–2045CrossRefGoogle Scholar
  36. 36.
    Oleinikova A, Sasisanker P, Weingartner H (2004) What can really be learned from dielectric spectroscopy of protein solutions? A case study of ribonuclease A. J Phys Chem B 108:8467–8474CrossRefGoogle Scholar
  37. 37.
    Jansson H, Bergman R, Swenson J (2005) Relation between solvent and protein dynamics as studied by dielectric spectroscopy. J Phys Chem B 109:24134–24141CrossRefGoogle Scholar
  38. 38.
    Khodadadi S, Pawlus S, Sokolov A (2008) Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data. J Phys Chem B 112:14273CrossRefGoogle Scholar
  39. 39.
    Arbe A, Colmenero J, Frick B, Monkenbusch M, Richter D (1998) Investigation of the dielectric β-process in polyisobutylene by incoherent inelastic neutron scattering. Macromolecules 31:4926–4934CrossRefGoogle Scholar
  40. 40.
    Price WS (1997) Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part I. Basic theory. Concepts Magn Reson 9:299–336CrossRefGoogle Scholar
  41. 41.
    Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic, LondonGoogle Scholar
  42. 42.
    Brown SP, Spiess HW (2001) Advanced solid-state NMR methods for the elucidations of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem Rev 101:4125–4155CrossRefGoogle Scholar
  43. 43.
    Heuer A, Wilhelm M, Zimmermann H, Spiess HW (1995) Rate memory of structural relaxation in glasses and its detection by multidimensional NMR. Phys Rev Lett 75:2851–2854CrossRefGoogle Scholar
  44. 44.
    Bohmer R, Chamberlin RV, Diezemann G, Geil B, Heuer A, Hinze G, Kuebler SC, Richert R, Schiner B, Sillescu H, Spiess HW, Tracht U, Wilhelm M (1998) Nature of the non-exponential primary relaxation in structural glass-formers probed by dynamically selective experiments. J Noncryst Solids 235:1–9CrossRefGoogle Scholar
  45. 45.
    Qiu XH, Ediger MD (2003) Length scale of dynamic heterogeneity in supercooled d-sorbitol: comparison to model predictions. J Phys Chem B 107:459–464CrossRefGoogle Scholar
  46. 46.
    Meier R, Kahlau R, Kruk D, Rossler EA (2010) Comparative study of the dynamics in viscous liquids by means of dielectric spectroscopy and field cycling NMR. J Phys Chem A 114:7847–7855CrossRefGoogle Scholar
  47. 47.
    Bergamn R, Borjesson L, Torell LM, Fontana A (1997) Dynamics around the liquid-glass transistion in poly(propylene) glycol investigated by wide-frequency-range light scattering techniques. Phys Rev B 56:11619CrossRefGoogle Scholar
  48. 48.
    Berne BJ, Pecora R (2000) Dynamic light scattering with application to chemistry, biology and physics. Dover Publications Inc, MineolaGoogle Scholar
  49. 49.
    Dell’ Anna R, Ruocco G, Sampoli M, Viliani G (1998) High frequency sound waves in vitreous silica. Phys Rev Lett 80:1236–1239CrossRefGoogle Scholar
  50. 50.
    Sokolov AP, Buchenau U, Richter D, Masciovecchio C, Sette F, Mermet A, Fioretto D, Ruocco G, Willner L, Frick B (1999) Brillouin and Umklapp scattering in polybutadiene: comparison of neutron and X-ray scattering. Phys Rev E 60:R2464CrossRefGoogle Scholar
  51. 51.
    Masciovecchio C, Baldi G, Caponi S et al (2006) Evidence of a crossover in the frequency dependence of the acoustic attenuation in vitreous silica. Phys Rev Lett 97:035501CrossRefGoogle Scholar
  52. 52.
    Li C, Koga T, Li C et al (2005) Viscosity measurements of very thin polymer films. Macromolecules 38:5144–5151CrossRefGoogle Scholar
  53. 53.
    Bandyopdahyay R, Liang D, Harden JL, Leheny RL (2006) Slow dynamics, aging, and glassy rheology in soft and living matter. Sol State Comm 139:589–598CrossRefGoogle Scholar
  54. 54.
    Grubel G (2008) X-ray photon correlation spectroscopy at the European X-ray free-electron laser (XFEL) facility. CR Physique 9:668–680CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Chemical Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of ChemistryUniversity of Tennessee KnoxvilleKnoxvilleUSA
  3. 3.ISIS Facility, Rutherford Appleton LaboratoryHarwell Science, and Innovation CampusDidcotUK

Personalised recommendations