Skip to main content

Delivery of Peptides and Proteins via Long Acting Injections and Implants

  • Chapter
  • First Online:
Long Acting Injections and Implants

Abstract

Biomolecules are rarely orally bioavailable and parenteral injections are the industry standard. Development of long acting delivery systems will continue to help biopharmaceuticals reach their full therapeutic potential. Long acting injections have manifested into a range of products designed to target optimal therapeutic dosing requirements (prefilled syringes, long acting injections, sustained release depots, controlled release implants, targeted delivery, and larger payloads). Sustained release implants usually provide a longer term delivery duration than long acting injections and can be categorized into bioerodible systems (rods and cylinders) and implantable devices. This chapter reviews biomolecules currently marketed or in clinical trials, utilizing long acting parenteral technology or sustained/controlled release implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evers P (2009) Delivering new biopharmaceutical therapies: challenges and opportunities. Pharmavision Market Report

    Google Scholar 

  2. Thomson Physicians’ Desk Reference (2009) 63th ed Montvale, Thomson Publishing, NJ

    Google Scholar 

  3. Sawyer WH, Manning M (1988) Synthetic analogs of vasopressin. ISI Atlas Sci 2:252–256

    CAS  Google Scholar 

  4. Deacon CF, Johnsen AH, Holst JJ (1995) Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocr Metab 80:952–957

    Article  PubMed  CAS  Google Scholar 

  5. Meier JJ, Gallwitcz B, Nauck MA (2003) Glucagon-like peptide 1 and gastric inhibitory polypeptide: potential applications in type 2 diabetes mellitus. BioDrugs 17:93–102

    Article  PubMed  CAS  Google Scholar 

  6. Nauck MA (1997) Glucagon like peptide 1. Curr Opin Endocrinol Diabet 4:291–299

    Article  CAS  Google Scholar 

  7. Green BD, Irwin N, Gault VA, O’Hart FPM, Flatt PR (2005) Development and therapeutic potential of incretin hormone analogues for type 2 diabetes. Br J Diabetes Vascular Dis 5:134–140

    Article  CAS  Google Scholar 

  8. Dungan K, Buse JB (2005) Glucagon-like peptide 1-based therapies for type 2 diabetes: a focus on exenatide. Clin Diabet 23:56–62

    Article  Google Scholar 

  9. http://www.roche.com/investors/ir_update/inv-update-2010-04-29.htm (press release 29 April 2010)

  10. Burrin DG, Petersen Y, Stoll B, Sangild P (2001) Glucagon like peptide 2: A nutrient responsive gut growth factor. J Nutr 131:709–712

    PubMed  CAS  Google Scholar 

  11. Knudsen LB (2004) Glucagon-like peptide-1: The basis of a new class of treatment for type 2 diabetes. J Med Chem 47:4128–4134

    Article  PubMed  CAS  Google Scholar 

  12. Leger R, Thibaudeau K, Robitaille M, Quraishi O, van Wyk P, Bousquet-Gagnon N, Carette J, Castaigne JP, Bridon DP (2004) Identification of CJC-1131-albumin bioconjugate as a stable and bioactive GLP-1 (7–36) analog. Bioorg Med Chem Lett 14:4395-43-98

    Google Scholar 

  13. Giannoukakis N (2003) CJC-1131 ConjuChem. Curr Opin Invest Drugs 4:1245–1249

    CAS  Google Scholar 

  14. Thorkildsen C, Neve S, Larsen BD, Meier E, Petersen JS (2003) Glucagon-like peptide 1 receptor agonist ZP10A increases insulin mRNA expression and prevents diabetic progression in db/db mice. J Pharmacol Exp Ther 307:490–496

    Article  PubMed  CAS  Google Scholar 

  15. http://www.polytherics.co.uk/newsroom/press-releases/2010/3/

  16. Lovshin JA, Drucker DJ (2009) Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol 5:262–269

    Article  PubMed  CAS  Google Scholar 

  17. http://newsroom.lilly.com/releasedetail.cfm?releaseid=388377

  18. Schellenberger V, Wang CW, Geething NC, Spink BJ, Campbell A, To W, Scholle MD, Yin Y, Yao Y, Bogin O, Cleland JL, Silvermanm J, Stemmer WPC (2009) A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotech 27:1186–1192

    Article  CAS  Google Scholar 

  19. http://www.versartis.com/content/productpipeline/overview.htm

  20. http://www.phasebio.com/phasebio.asp?id=208&category=5

  21. Locatelli F, Del Vecchio L (2009) Hematide for the treatment of chronic kidney disease related anemia. Expert Rev Hematol 2:377–383

    Article  PubMed  CAS  Google Scholar 

  22. http://www.affymax.com/view.cfm/23/Hematidepeginesatid e-Overview

  23. Esmaeili F, Ghahremani MH, Esmaeili B, Khoshayand MR, Atyabi F, Dinarvand R (2008) PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution. Int J Pharm 349:249–255

    Article  PubMed  CAS  Google Scholar 

  24. Dunn R (2003) Application of the ATRIGEL® implant drug delivery technology for patient-friendly, cost-effective product development. Drug Deliv Technol 3:38–44

    CAS  Google Scholar 

  25. Bodmer D, Kissel T, Traechslin E (1992) Factors influencing the release of peptides and proteins from biodegradable parenteral depot systems. J Control Release 21:129–137

    Article  CAS  Google Scholar 

  26. http://www.ambrilia.com/en/products/acromegaly-octreotide.php

  27. Drucker DJ, Buse JB, Taylor K, Kendall DM, Trautmann M, Zhuang D, Porter L (2008) Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 372:1240–1250

    Article  PubMed  CAS  Google Scholar 

  28. Cunningham BC, Mulkerrin MG, Wells JA (1991) Dimerization of human growth hormone by zinc. Science 253:545–548

    Article  PubMed  CAS  Google Scholar 

  29. Owens DR, Zinman B, Bolli GB (2001) Insulins today and tomorrow. Lancet 358:739–746

    Article  PubMed  CAS  Google Scholar 

  30. http://www.camurus.com/index.asp?DocumentIDSub=7&DocumentID=3&ShowSub=(1)&Show=(3)&main=Technologies

  31. http://www.durect.com/wt/durect/page_name/saber

  32. http://www.pacira.com/depofoam-about.aspx

  33. Ye Q, Asherman J, Stevenson M, Brownson E, Katre NV (2000) DepoFoam technology: a vehicle for controlled delivery of protein and peptide drugs. J Control Release 64:155–166

    Article  PubMed  CAS  Google Scholar 

  34. Butts C, Maksymiuk A, Glenwood G, Soulieres D, Erie M, Cormier Y, Ellis PM, Price A, Ravinder S, Nevin M (2007) A multi-centre phase IIB randomized controlled study of BLP25 liposome vaccine (L-BLP 25 or Stimuvax) for active specific immunotherapy of non-small cell lung cancer (NSCLC): updated survival analysis. J Thorac Oncol 2:5332–5333

    Google Scholar 

  35. Brange J, Volund A (1999) Insulin analogs with improved pharmacokinetic profiles. Adv Drug Deliv Rev 35:307–335

    Article  PubMed  CAS  Google Scholar 

  36. Ratner RE, Hirsch IB, Neifing JL, Gard SK, Mecca TE, Wilson CA (2000) Less hypoglycemia with insulin glargine in intensive insulin therapy for type 1 diabetes. U.S. study group of insulin glargine in type 1 diabetes. Diabet Care 23:639–643

    Article  CAS  Google Scholar 

  37. Yki-Jarvinen H, Dressler A, Zieman M (2001) Less nocturnal hypoglycemia and better post-dinner glucose control with bedtime insulin glargine compared with bedtime NPH insulin during insulin combination therapy in type 2 diabetes. HOE 901/3002 study group. Diabet Care 23:1130–1136

    Article  Google Scholar 

  38. Owens DR (2002) New horizons-alternative routes for insulin therapy. Nat Rev Drug Discov 1:529–540

    Article  PubMed  CAS  Google Scholar 

  39. Bethel MA, Feinglos MN (2005) Basal insulin therapy in type 2 diabetes. J Am Board Fam Pract 18:199–204

    Article  PubMed  Google Scholar 

  40. Frokjaer S, Otzin DE (2005) Protein drug stability: a formulation challenge. Nat Rev Drug Discov 4:298–306

    Article  PubMed  CAS  Google Scholar 

  41. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    Article  PubMed  CAS  Google Scholar 

  42. Roberts MJ, Harris JM (1998) Attachment of degradable poly(ethylene glycol) to proteins has the potential to increase therapeutic efficacy. J Pharm Sci 87:1440–1445

    Article  PubMed  CAS  Google Scholar 

  43. Yang M, Frokjaer S (2010) Novel formulation approaches for peptide and protein injectables. In: Jorgenson L, Nielson HM (eds) Delivery technologies for biopharmaceuticals: peptides, proteins, nucleic acids and vaccines. Wiley, London

    Google Scholar 

  44. Molineux G (2004) The design and development of pegfilgrastim (PEG-rmetHuG-CSF Neulasta). Curr Pharm Des 10:1235–1244

    Article  PubMed  CAS  Google Scholar 

  45. Piedmonte DM, Trueheit MJ (2007) Formulation of neulasta (pegfilgrastim). Adv Drug Deliver Rev 60:50–58

    Article  Google Scholar 

  46. http://www.intasbiopharma.co.in/Neupeg.html

  47. Goffin V, Touraine P (2004) Pegvisomant Pfizer/Sensus. Curr Opin Invest Drug 5:463–468

    CAS  Google Scholar 

  48. Pepinski RB, LePage DJ, Gill A, Chakraborty A, Vaidyanathan S, Green M, Baker DP, Whalley E, Hochman PS, Martin P (2001) Improved pharmacokinetic properties of polyethylene glycol-modified form of interferon β-1a with preserved in vitro bioactivity. J Pharmacol Exp Ther 297:1059–1066

    Google Scholar 

  49. Bailon P, Won CY (2009) PEG-modified biopharmaceuticals. Expert Opin Drug Deliv 6:1–16

    Article  PubMed  CAS  Google Scholar 

  50. http://www.sunbio.com/english/information/simple_view.asp?idx=3

  51. http://www.novonordisk.com/press/rd_pipeline/rd_pipeline.asp?showid=7

  52. Olofsson C, Ahl T, Johansson T, Larsson S, Nellgard P, Ponzer S, Fagrell P, Pryzbelski R, Keipert P, Winslow N, Winslow R (2006) A multicenter clinical study on the safety and activity of maleimide-polyethylene glycol-modified hemoglobin (Hemospan) in patients undergoing major orthopedic surgery. Anesthesiology 105:1153–1163

    Article  PubMed  CAS  Google Scholar 

  53. Ton NC, Parker GJM, Jackson A, Mullamitha S, Buonaccorsi GA, Roberts C, Watson Y, Davies K, Cheung S, Hope L, Power F, Lawrance J, Valle J, Saunders M, Felix R, Soranson JA, Rolfe L, Zinkewich-Peotte K, Jayson GC (2007) Phase 1 evaluation of CDP791, a PEGylated di-Fab’ conjugate that binds vascular endothelial growth factor receptor 2. Clin Cancer Res 13:7113–7118

    Article  PubMed  CAS  Google Scholar 

  54. Moshfegh AA, Puliafito CA (2005) Pegaptanib sodium for the treatment of neovascular age-related macular degeneration. Exp Opin Invest Drugs 14:671–682

    Article  Google Scholar 

  55. Pisal DS, Kosloski MP, Balu-Iyer SV (2010) Delivery of therapeutic proteins. J Pharm Sci 99:2557–2575

    Article  PubMed  CAS  Google Scholar 

  56. Bause E, Lehle L (1979) Enzymatic N-glycosylation and O-glycosylation of synthetic peptide acceptors by dolicho-linked sugar derivatives in yeast. Eur J Biochem 101:531–540

    Article  PubMed  CAS  Google Scholar 

  57. Pless DD, Lennarz WJ (1977) Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci USA 74:143–138

    Article  Google Scholar 

  58. Jain S, Hreczuk-Hirst D, Laing P, Gregoriadis G (2004) Polysialation: The natural way to improve the stability and pharmacokinetics of protein and peptide drugs. Drug Deliv Syst Sci 4:3–9

    Google Scholar 

  59. http://www.lipoxen.com/pipeline/polyxen-product-pipeline.aspx

  60. Brange J, Langkjaar L (1997) Protein delivery: physical systems. In: Sanders LM, Hendren RW (eds) Protein delivery. Plenum, New York

    Google Scholar 

  61. Trehan A, Ali A (1998) Recent approaches in insulin delivery. Drug Dev Ind Pharm 24:589–597

    Article  PubMed  CAS  Google Scholar 

  62. Cleland JL, Jones AJS (1996) Stable formulations of recombinant human growth hormone and interferon-γ for microencapsulation in biodegradable microspheres. Pharm Res 13:1464–1475

    Article  PubMed  CAS  Google Scholar 

  63. Chan YP, Myrueix R, Kravtzoff R, Nicholas F, Lundstrom K (2007) Review on Medusa: a polymer-based sustained release technology for protein and peptide drugs. Expert Opin Drug Deliv 4:441–451

    Article  PubMed  CAS  Google Scholar 

  64. http://www.flamel.com/techAndProd/medusa.shtml

  65. Filpula D (2007) Antibody engineering and modification technologies. Biomol Eng 24:201–215

    Article  PubMed  CAS  Google Scholar 

  66. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136

    Article  PubMed  CAS  Google Scholar 

  67. Ryan SM, Mantovani G, Wang X, Haddleton DM, Brayden DJ (2008) Advances in PEGylation of important biotech molelcules: delivery aspects. Expert Opin Drug Deliv 5:371–383

    Article  PubMed  CAS  Google Scholar 

  68. Daugherty AL, Mrsny RJ (2006) Formulation and delivery issues for monoclonal antibody therapeutics. Adv Drug Deliv Rev 58:686–706

    Article  PubMed  CAS  Google Scholar 

  69. Donelly RJ, Milstead RAV (1987) ZOLADEX studies in prostatic and breast cancer. In: Vickery BH, Nestor JJ (eds) LHRH and its analogues: contraception and therapeutic applications, Part 2. MTP Press, Lancaster

    Google Scholar 

  70. Stevenson CL (2007) Formulation of leuprolide at high concentration for delivery from a one year implant. In: McNally EJ, Hastedt JE (eds) Protein formulation and delivery, 2nd edn. Marcel Dekker, Inc, NY

    Google Scholar 

  71. Stevenson CL, Theeuwes F, Wright JC (2000) Osmotic implantable delivery systems. In: Wise D (ed) Handbook of pharmaceutical controlled release technology. Marcel Dekker, Inc, New York

    Google Scholar 

  72. Wright JC, Leonard ST, Stevenson CL, Beck JC, Chen G, Jao RM, Johnson PA, Leonard J, Skowronski RJ (2001) An in vivo/in vitro comparison with a leuprolide osmotic implant for the treatment of prostate cancer. J Control Release 75:1–10

    Article  PubMed  CAS  Google Scholar 

  73. Cukierski MJ, Johnson PA, Beck JC (2001) Chronic (60 week) toxicity study of DUROS leuprolide implants in dogs. Int J Toxicol 20:369–381

    Article  PubMed  CAS  Google Scholar 

  74. http://www.intarcia.com/Late-Breaker_ADA_ITCA650-Phase2StudyResults.html

  75. http://www.endo.com/Products.aspx

  76. http://www.durect.com/wt/durect/page_name/implants

  77. Prescott JH, Krieger TJ, Lipka S, Staples MA (2007) Dosage form development, in vitro release kinetics, and in vitro-in vivo correlation for leuprolide released from an implantable multi-reservoir array. Pharm Res 24:1252–1261

    Article  PubMed  CAS  Google Scholar 

  78. Proos ER, Prescott JH, Staples MA (2008) Long-term stability and in vitro release of hPTH(1–34) from a multi-reservoir array. Pharm Res 25:1387–1395

    Article  PubMed  CAS  Google Scholar 

  79. Gittens SA, Bansal G, Zernicke RF, Uludag H (2005) Designing proteins for bone targeting. Adv Drug Deliv Rev 57:1011–1036

    Article  PubMed  CAS  Google Scholar 

  80. http://wwwp.medtronic.com/Newsroom/ImageLibraryDetails.do?itemId=1100191883060&lang=en_US

  81. http://www.stryker.com/en-us/products/Orthobiologicals/Osteoinductive/index.htm

  82. http://www.intarcia.com/hepatitis.html

  83. Mordenti J, Thomsen K, Licko V, Berleau L, Kahn JW, Cuthbertson RA, Duenas ET, Ryan AM, Schofield C, Berger TW, Meng YG, Cleland J (1999) Intraocular pharmacokinetics and safety of a humanized monoclonal antibody in rabbits after intravitreal administration of a solution or a PLGA microsphere formulation. Toxicol Sci 52:101–106

    Article  PubMed  CAS  Google Scholar 

  84. http://www.surmodics.com/news-events.html (press release 06 Oct 2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia L. Stevenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Controlled Release Society

About this chapter

Cite this chapter

Stevenson, C.L., Rhodes, C.A., Prestrelski, S.J. (2012). Delivery of Peptides and Proteins via Long Acting Injections and Implants. In: Wright, J., Burgess, D. (eds) Long Acting Injections and Implants. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0554-2_20

Download citation

Publish with us

Policies and ethics