Advertisement

Carbon-13 and Proton Magnetic Resonance Studies of Chlorinated Biphenyls

  • Nancy K. Wilson
  • Marshall Anderson
Chapter
Part of the Environmental Science Research book series (ESRH, volume 4)

Abstract

13C and 1H nuclear magnetic resonance spectra were obtained for ten symmetric chlorinated biphenyls and for 4,4′ disubstituted biphenyls with NH1H, CH3O, CH3, Cl, F and N02 substituents. The 1H shieldings are shown to correlate with π electron densities calculated by the CNDO/2 method, if corrections are made for ring current effects from the second ring. For freely rotating biphenyls, additive substituent parameters obtained from benzene data predict the 13C shieldings with reasonable precision. Steric hindrance to rotation by substituents at the 2,6,2′ and/or 6′ positions causes deviations from the substituent effects predicted by additivity; these deviations in δC are especially pronounced for the carbons at positions land 1′. The total charge correlation with δC in substituted benzenes is also valid in non-hindered substituted biphenyls. Small differences in δC between chlorinated biphenyl isomers are best related to differences in the calculated σ electron densities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.B. Peakall and J.L. Lincer, BioScience, 20, 958 (1970); R. Edwards, Chem. Ind., 1340 (1971).CrossRefGoogle Scholar
  2. 2.
    L. Fishbein, J. Chromatogr., 68,345 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    See, for example, papers presented at the December 1971 Conference on PCBs, Rougemont, North Carolina, sponsored by the National Institute of Environmental Health Sciences, reported in Environmental Health Perspectives, Exp. Issue No.1, 1972. (DHEW Publication No. NIH 72-218.)Google Scholar
  4. 4.
    D. Welti and D. Sissons, Org. Mag. Reson., 4,309 (1972).CrossRefGoogle Scholar
  5. 5.
    K.D. Bartle, J. Ass. Offic. Anal. Chem., 55, 1101 (1972).Google Scholar
  6. 6.
    A.R. Tarpley and J.H. Goldstein, J. Phys. Chem., 75,421 (1971).CrossRefGoogle Scholar
  7. 7.
    W.B. Smith, A.M. Ihrig and J.L. Roark, J. Phys. Chem., 74, 812 (1970); Y. Nomura and Y. Takeuchi, Tetrahedron Lett., 5585 (1968); M.J.S. Dewar and A.P. Marchand, J. Amer. Chem. Soc., 88, 3318 (1966); D.M. Grant, R.C. Hirst and H.S. Gutowsky, J. Chem. Phys., 38, 470 (1963); S. Brownstein, J. Amer. Chem. Soc., 80, 2300 (1958).CrossRefGoogle Scholar
  8. 8.
    H. Hasegawa, M. Imanari and K. Ishizu, Bull. Chem. Soc. Jap., 45, 1153 (1972).CrossRefGoogle Scholar
  9. 9.
    R. Freeman, H.D.W. Hill and R. Kaptein, J. Mag. Reson., 7, 327 (1972).Google Scholar
  10. 10.
    G.C. Levy, J. C. S. Chem. Commun., 47 (1972).Google Scholar
  11. 11.
    G.E. Maciel and J.J. Natterstad, J. Chem. Phys., 42, 2427 (1965); T.D. Alger, D.M. Grant and E.G. Paul, J. Amer. Chem. Soc., 88, 5397 (1966).CrossRefGoogle Scholar
  12. 12.
    G.C. Levy, J. C. S. Chem. Commun., 352 (1972); G.C. Levy, J.D. Cargioli and F.A.L. Anet, J. Amer. Chem. Soc., 95,1527 (1973).CrossRefGoogle Scholar
  13. 13.
    O. Gropen and H.M. Seip, Chem. Phys. Lett., 11, 445 (1971).CrossRefGoogle Scholar
  14. 14.
    M.J.S. Dewar and A.J. Harget, Froc. Roy. Soc. Lond. A, 315,443 (1970); A. Golebrewski and A. Parczewski, Z. Naturforsch.,A, 25, 1710 (1970); B. Tinland, Theor. Chim. Acta, 11, 452 (1968); G. Casalone, C. Mariani, A. Mugnoli and M. Simonetta, Mol. Phys., 15,339 (1968); N.C. Baird and M.J.S. Dewar, J. Amer. Chem. Soc., 89, 3966 (1967); I. Fischer-Hjalmars, Tetrahedron, 19, 1805 (1963); H. Suzuki, Bull. Chem. Soc. Jap., 32, 1340 (1959); F. Adrian, J. Chem. Phys., 28, 608 (1958).CrossRefGoogle Scholar
  15. 15.
    H. Suzuki, Bull. Chem. Soc. Jap., 32,1350 (1959); 32,1357 (1959).CrossRefGoogle Scholar
  16. 16.
    H. Suzuki, Bull. Chem. Soc. Jap., 33, 109 (1960).CrossRefGoogle Scholar
  17. 17.
    M. Karplus and J.A. Pople, J. Chem. Phys., 38, 2803 (1963).CrossRefGoogle Scholar
  18. 18.
    E. Farbrot and P.N. Skancke, Acta Chem. Scand. 24, 3645 (1970).CrossRefGoogle Scholar
  19. 19.
    J.R. Pedersen, Acta Chem. Scand., 26, 3181 (1972).CrossRefGoogle Scholar
  20. 20.
    K.E. Howlett, J. Chem. Soc., Pt. 1, 1055 (1960).CrossRefGoogle Scholar
  21. 21.
    D.P. Santry and G.A. Segal, J. Chem. Phys., 47, 158 (1967); D.P. Santry, J. Amer. Chem. Soc., 90, 3309 (1968).CrossRefGoogle Scholar
  22. 22.
    J.J. Kaufman and R. Predney, Int. J. Quantum Chem., 231 (1972).Google Scholar
  23. 23.
    J.R. Sabin, D.P. Santry and K. Weiss, J. Amer. Chem. Soc., 94, 6651 (1972).CrossRefGoogle Scholar
  24. 24.
    A. Rauk, J.D. Andose, W.G. Frick, R. Tang and K. Mislow, J. Amer. Chem. Soc., 93, 6507 (1971).CrossRefGoogle Scholar
  25. 25.
    N. K. Wilson, M. Anderson and J. B. Stothers, unpublished results.Google Scholar
  26. 26.
    J. A.Pople and D. L.Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York, 1970; J. A. Pople, Accounts Chern. Res., 3, 217 (1970).Google Scholar
  27. 27.
    R.J. Pugmire and D.M. Grant, J. Amer. Chem. Soc., 93, 1880 (1971).CrossRefGoogle Scholar
  28. 28.
    P. Lazzeretti and F. Taddei, Org. Magn. Resonance, 3, 282 (1971).Google Scholar
  29. 29.
    G.L. Nelson, G.C. Levy and J.D. Cargioli, J. Amer. Chem. Soc., 94, 3089 (1972).CrossRefGoogle Scholar
  30. 30.
    (a) Program 111, Quantum Chemistry Program Exchange, Indiana University. (b) Program 141, Quantum Chemistry Program Exchange, Indiana University.Google Scholar
  31. 31.
    L. M. Jackman and S. Sternhe11, Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, Pergamon, New York, 1969.Google Scholar
  32. 32.
    H.P. Figeys and R. Flammang, Mol. Phys., 12, 581 (1967).CrossRefGoogle Scholar
  33. 33.
    R.E. Mayo and J.H. Goldstein, Mol. Phys., 10, 30 (1966); G.E. Johnson and F.A. Bovey, J. Chem. Phys., 29, 1012 (1958).CrossRefGoogle Scholar
  34. 34.
    Y. Nomura and Y. Takeuchi, Tetrahedron Lett., 5665 (1968).Google Scholar
  35. 35.
    J.F. Sebastian and J.R. Grunwald, Can. J. Chem., 49, 1779 (1971); J.M. Haigh and D.A. Thornton, Tetrahedron Lett., 2043 (1970); P. Lazzeretti and F. Taddei, Tetrahedron Lett., 805 (1970); T.K. Wu and B.P. Dailey, J. Chem. Phys., 41, 2796 (1964); J.C. Shug and J.C. Deck, J. Chem. Phys., 37, 2618 (1962); G. Fraenkel, R.E. Carter, A. McLachlan and J.H. Richards, J. Amer. Chem. Soc., 82, 5846 (1960).CrossRefGoogle Scholar
  36. 36.
    J.B. Stothers, Carbon-13 NMR Spectroscopy, Academic Press, New York, 1972.Google Scholar
  37. 37.
    N. K. Wilson and J. B. Stothers, ℌStereochemical Aspects of 13C NMR Spectroscopyℍ, in Topics in Stereochemistry, Vol. 8, E. Eliel and N. L. Allinger, ed., Wi1ey-Interscience, New York, 1973. (In press).Google Scholar
  38. 38.
    G.C. Levy and G.L. Nelson, Carbon-13 Nuclear Magnetic Resonance for Organic Chemists, Wiley-Interscience, New York, 1972.Google Scholar
  39. 39.
    A.R. Tarpley and J.H. Goldstein, J. Phys. Chem., 76, 515 (1972); A.R. Tarpley and J.H. Goldstein, J. Mol. Spectrosc., 39, 275 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • Nancy K. Wilson
    • 1
  • Marshall Anderson
    • 1
  1. 1.National Institute of Environmental Health SciencesUSA

Personalised recommendations