Advertisement

Clinical Electrophysiology of the Calcium Antagonists

  • E. Rowland
  • D. M. Krikler
Chapter
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 39)

Abstract

In the century since calcium was shown to be essential in the normal function of the myocardium (1) little further information on the importance was available until Fleckenstein and colleagues (2) proposed the concept of calcium antagonism. A variety of substances were shown to be capable of inhibiting the transmembrane passage of calcium ions. Although this work had concentrated on the role of calcium in the myocardium the profound influence of these compounds was evident in the cells of the specialised conducting system. It has become apparent that the transmembrane flux of calcium is a fundamental but complex procedure: additionally this calcium transfer subserves different purposes in different types of cells. In the myocardium calcium is of fundamental importance in excitation-contraction coupling but of limited importance is electrical depolarisation. The contrast, calcium is of profound importance in the generation and propagation of electrical activity in the SA and AV nodes. Although, in both the transitional cells of the SA node and the N cells of the AV node, sodium ions have a role in the initial generation of the action potential it is calcium which determines to a greater extent the upstroke velocity and the speed of repolarisation. Thus substances which impair the transmembrane movement of calcium ions may have electrophysiological actions throughout the action potential. Translating these influences from the single cell to the intact heart would suggest that an influence on the upstroke velocity of the action potential will slow conduction while a prolongation of repolarisation will lengthen the refractory period and slow the slope of spontaneous distolic depolarisation. Where calcium antagonists have clinical electrophysiological actions these are the fundamental effects although our ability to observe changing SA nodal function in man is very limited.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ringer S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol (London) 1882; 4: 29–42.Google Scholar
  2. 2.
    Fleckenstein A, Tritthart H, Fleckenstein B, Herbst A, Grun G. Eine neue Gruppe kompetitiver Ca++—Antagonisten (Iproveratril, D600, Prenylamin) mit starken Heniffekten auf die elektrcmekanische Koppelung im Waniiblüter-Myokard. Pfluegers Arch 1969; 307: R25.Google Scholar
  3. 3.
    Spear JF, Horowitz LN, Moore EN. The slow response in human ventricle. In: Zipes DP, Bailey JC, Elharrar V, eds. The slow inward current and cardiac arrhythmias. The Hague: Martinus Nijhoff 1980; 309– 21.Google Scholar
  4. 4.
    Cranefield PF. Action potentials, afterpotentials and arrhythmias. Circ Res 1977; 41: 415–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Krikler EM. Rowland E. Clinical value of calcium antagonists in treatment of cardiovascular disorders. J Am Coll Cardiol 1983; 1: 355–64.PubMedCrossRefGoogle Scholar
  6. 6.
    Bender F, Kojima N, Replöh FD, Odelman G. Behandlung tachykarder Rhythmusstorungen des herzens durch Beta-Rezeptorenblockade des Atrioventrikulargewebes. Med Welt 1966; 17: 1120–6.Google Scholar
  7. 7.
    Wit AL, Cranefield PF. Effect of verapanil on the sinoatrial and atrioventricular nodes of the rabbit and the mechanisms by which it arrests reentrant atrioventricular nodal tachycardia. Circ Res 1974; 35: 413–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Wellens HJJ, Tan SL, Bar FWH et al. Effects of verapamil studied by programmed electrical stimulation of the heart in patients with paroxysmal reentrant supraventricular tachycardia. Br Heart J 1977; 39: 1058–65.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Krikler DM, Rowland E. Management of supraventricular tachycardia with drugs and artificial pacing. In Narula OS, ed. Cardiac arrhythmias: electrophysiology diagnosis and management. Baltimore: Williams arid Wilkins, 1979; 382–96.Google Scholar
  10. 10.
    Härtel G, Hartikainen M. Comparison of verapamil and practolol in paroxysmal supraventricular tachycardia. Eur J Cardiol 1976; 4: 87–90.PubMedGoogle Scholar
  11. 11.
    Krikler DM. Verapamil in cardiology. Eur J Cardiol. 1974; 2: 3–9.PubMedGoogle Scholar
  12. 12.
    Klein HO, Pauzner H, Di Segni E, David D, Kaplinskv E. The beneficial effects of verapamil in chronic atrial fibrillation. Arch Intern Mai 1979; 139: 747–9.CrossRefGoogle Scholar
  13. 13.
    Breithardt G, Seipel L, Wiebringhaus E, Loogen F. Effects of verapamil on sinus node function in man. Eur J Cardiol 1978; 8: 379–94.PubMedGoogle Scholar
  14. 14.
    Benaim ME, Asystole after verapamil. Br Med J 1972; 2: 169.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Winniford MD, Markhan RV Jr, Firth BG, Nicod P, Hillis LD. Hemodynamic and electrophysiological effects of verapamil and nifedipine in patients on propranolol. Am J Cardiol 1982; 50: 704–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Singh BN, Vaughan Williams EM. A fourth class of antidysrhythmic action? Effects of verpamil on ouabain toxicity, on atrial and ventricular intracellular potentials and on other features of cardiac function. Cardiovasc Res 1972; 6: 109–14.PubMedCrossRefGoogle Scholar
  17. 17.
    Cavey D, Vincent JP, Lazdunski M. The muscarinic receptor of heart cell membranes. FEBS Lett 1977; 84: 110–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Glossman H, Homing R. Calcium and potassium blockers interact with ∝ adrenoceptors. Mol Cell Endocrinol 1980; 19: 243–51.CrossRefGoogle Scholar
  19. 19.
    Taira N, Mot an ur a S, Narimatsu A, lijima T. Experimental pharmacological investigations of effects of nifedipine on atrioventricular conduction in comparison with those of other coronary vasodilators. In: Lochner W, Braasch W, Kroneberg G, eds. Second international Adalat sympsium. Mew therapy of ischaonic heart disease. Berlin: Springer-Verlag, 1975: 40–8.Google Scholar
  20. 20.
    Rowland E, Evans T, Krikler D. Effect of nifedipine on atrioventricular conduction as compared with verapamil. Intracardiac electrophysiological study. Br Heart J 1979; 42: 124–7.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Taira N, Narimatsu A. Effects of nifedipine, a potent calcium- antagonistic coronary vasodilator, on atrioventricular conduction and blood flow in the isolated atrioventricular node preparation of the dog. Naunyn Schmiedebergs Arch Pharmacol 1975; 290: 107–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Rowland E, Razis P, Sugrue D, Krikler DM. Acute and chronic haemodynamic and electropysiological effects of nifedipine in patients receiving atenolol. Br Heart J 1983; 50: 383–9.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Yamada K, Shimamura Y, Nakajiraa H. Studies on a new 1–5 benzothiazepine derivative (CRD-401). V. Antiarrhythmic actions. Jpn J Pharmacol 1973; 23: 321–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Kawai C, Konishi T, Matsuyama E, Okazaki H. Comparative effects of three calcium antagonists, diltiazem, verapamil and nifedipine, on sinoatrial and atrioventricular nodes. Experimental and clinical studies. Circulation 1981; 63: 1035–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Wakesa Y, Ikeda T, Oshira Y, Numa T, Sugimoto T. Beneficial effects of diltiazem on reentrant tachycardia involving AV conduction (Abstr). Pace 1979; 2: A-8.Google Scholar
  26. 26.
    Rowland E, McKenna WJ, Gillker H, Krikler CM. The comparative effects of diltiazem and verapamil on atrioventricular conduction and atrioventricular reentry tachycardia. Circ Res 1983; 52 (suppl I): 163–8.Google Scholar
  27. 27.
    Vogel S, Crampton R, Sperelakis N. Blockade of myocardial slow channels by bepridil (CEEM-1978). J Pharmacol Exp Ther 1979; 210: 378–85.PubMedGoogle Scholar
  28. 28.
    Winslow E, Kane KA. Supraventricular antidysrhythmic and electrophysiological effects of bepridil, a new antianginal agent. J Cardiovasc Pharmacol 1981; 3: 655–67.PubMedCrossRefGoogle Scholar
  29. 29.
    Rowland E, McKenna W, Krikler CM. Comparative electrophysiological effects of novel antiarrhythmic drug, bepridil (Abstr). Br Heart J 1982; 48: 87.CrossRefGoogle Scholar
  30. 30.
    Desoutter P, Haiat R. Modifications electrocardiographiques induites par le bepridil. IJh nouvel inhibiteur calcique. Arch Mai Coeur 1980; 73: 1237–8.Google Scholar
  31. 31.
    Leclercq JF, Kural S, Valere PE. Bepridil et torsades de pointes. Arch Mai Coeur 1983; 76: 341–8.Google Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1984

Authors and Affiliations

  • E. Rowland
  • D. M. Krikler

There are no affiliations available

Personalised recommendations