Advertisement

Action of Calcium Slow Channel Inhibitors on Cardiac and Vascular Smooth Muscle Membranes

  • Mohammed A. Matlib
  • Arnold Schwartz
  • A. DePover
  • G. Grupp
  • I. Grupp
  • S. W. Lee
  • P. Vaghy
  • T. Wang
Chapter
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 39)

Abstract

Cardiac and most vascular smooth muscle cells depend on extracellular Ca2+ for contraction. The influx of Ca2+ in these cells is known to occur through Ca2+-selective slow channels during the phase 2 of the action potential when these channels are presumably “open.” A number of organic compounds classified as calcium antagonists (1) were found to antagonize the extracellular Ca2+-dependent contraction. These compounds are also referred to as “calcium slow channel inhibitors,” “calcium channel blockers,” or “calcium entry blockers.” While they differ in chemical structures (Fig. 1), they do exert at least one common effect, viz., inhibition of contraction or relaxation in cardiac and vascular smooth muscles. They are much more potent in vascular smooth muscle than in cardiac muscle, producing vasodilation at low concentrations and negative inotropy at much higher concentrations. By virtue of this differential effect, some of these calcium antagonists have been found to be useful in the treatment of angina pectoris.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fleckenstein A: Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol. (17): 149–166, 1977.CrossRefGoogle Scholar
  2. 2.
    Hartshorne DJ: Biochemical basis for contraction of vascular smooth muscle. Chest (78): 140–149, 1980.PubMedCrossRefGoogle Scholar
  3. 3.
    Kanamor M, Naka M, Asano M, and Hidaka A: Effect of N-(6-aminohexy)-5-chloro-1-naphthalenesulfonamide and other calmodulin antagonists (calmodulin interacting agents) on calcium-induced contraction of rabbit aortic strips. J. Exptl. Pharmacol. Ther. (217): 494–499, 1981.Google Scholar
  4. 4.
    Johnson JD, Vaghy PL, Crouch TH, Potter JD, and Schwartz A: An hypothesis for the mechanism of action of some Ca2+ antagonist drugs: Calmodulin as a receptor. In: Yoshida H, Hagihara Y, and Ebashi S (eds.) Advances in Pharmacology and Therapeutics. Pergamon Press, Oxford, 1982, pp. 121–138.Google Scholar
  5. 5.
    Hidaka H, Yamaki T, Totsuka T, and Asano M: Selective inhibition of Ca2+-binding modulator of phosphodiesterase produces vascular relaxation and inhibits actin-myosin interaction. Mol. Pharmacol. (15): 49–59, 1979.PubMedGoogle Scholar
  6. 6.
    Asano M, Suzuki Y, and Hidaka H: Effects of various calmodulin antagonist on contraction of rabbit aortic strips. J. Pharmacol. Exptl. Ther. (220): 191–196, 1981.Google Scholar
  7. 7.
    Johnson JD, and Fugman DA: Calcium and calmodulin antagonists binding to calmodulin and relaxation of coronary segments. J. Pharmacol. Exptl. Ther. (226): 330–334, 1983.Google Scholar
  8. 7a.
    Thayer SA and Fairhurst AS: The interaction of dihydropyridine calcium channel blockers with calmodulin and calmodulin inhibitors. Mol. Pharmacol. (24): 6–9, 1983.PubMedGoogle Scholar
  9. 8.
    Metzger H, Stern HO, Pfeizer G, and Ruegg JC: Calcium antagonists affect calmodulin dependent contractility of skinned smooth muscle. Arzneim- Forch/Drug Res. (32) (Suppl. II): 1425–1427, 1982.Google Scholar
  10. 9.
    Spedding M: Direct inhibitory effects of some calcium-antagonists and trifluoperazine on the contractile proteins in smooth muscle. Br. J. Pharmacol. (79): 225–231, 1983.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 10.
    Godfraind T: Actions of nifedipine on calcium fluxes and contraction in isolated rat arteries. J. Exptl. Pharmacol. Ther. (224): 443–450, 1983.Google Scholar
  12. 11.
    Van Breeman C, Hwang OK, and Meisheri KD: Mechanism of inhibitory action of diltiazem on vascular smooth muscle contractility. J. Pharmacol. Exptl. Ther. (218): 459–463, 1981.Google Scholar
  13. 12.
    Morel N. Wibo M, Godfraind T: A calmodulin—stimulated Ca2+ pump in rat aorta plasma membranes. Biochim. Biophys. Acta (644): 82–88, 1981.PubMedCrossRefGoogle Scholar
  14. 13.
    DePover A, Matlib MA, Lee SW, Dube GP, Grupp IL, Grupp G, and Schwartz A: Specific binding of 3H-nimodipine to membranes from coronary arteries and heart in relation to pharmacological effects. Paradoxical stimulation by diltiazem. Biochem. Biophys. Res. Comm. (108): 110–117, 1982.PubMedCrossRefGoogle Scholar
  15. 14.
    Janis RA, Maurer SC, Sarmiento JG, Bolger FT, and Triggle DJ: Binding of [3H]nimodipine to cardiac and smooth muscle membranes. Eur. J. Pharmacology, (82): 191–194, 1982.CrossRefGoogle Scholar
  16. 15.
    Triggle CR, Agrawal DK, Bolger GT, Daniel EE, Kwan C-Y, Luchowski EM, and Triggle DJ: Calcium-channel antagonist binding to isolated vascular smooth muscle membranes. Canad. J. Physiol. Pharmacol. (60): 1738–1741, 1982.CrossRefGoogle Scholar
  17. 16.
    Boiger GT, Geno PJ, Luchowski EM, Siegel H, Triggle DJ, and Janis RA: High affinity binding of a calcium channel antagonist to smooth and cardiac muscle. Biochem. Biophys. Res. Comm. (104): 1604–1609, 1982.CrossRefGoogle Scholar
  18. 17.
    Williams LT and Tremble P: Binding of calcium antagonist, [3H] nitrendipine, to high affinity sites in bovine aortic smooth muscle and canine cardiac membranes. J. Clin. Invest. (70): 209–212, 1982.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 18.
    Fleckenstein A: Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial legions. In: Harris P and Opie LH (eds) Calcium and the heart. Academic Press, London, 1971, pp. 135–188.Google Scholar
  20. 19.
    Kass RS: Nisoldipine: A new, more selective calcium current blocker in cardiac Purkinje fibers. J. Pharmacol. Exptl. Ther. (223): 446–456, 1982.Google Scholar
  21. 20.
    Lee KS and Tsien RW: Mechanism of calcium channel blockade by verapamil, D600, diltiazem, and nitrendipine in single dialyzed heart cells. Nature (302): 790–794, 1983.PubMedCrossRefGoogle Scholar
  22. 21.
    Morad M, Tung L, Greenspan AM: Effect of diltiazem on calcium transport and development of tension in heart muscle. Am. J. Cardiol. (49): 595–601, 1982.PubMedGoogle Scholar
  23. 22.
    Morad M, Goldman YE, Trentham DR: Rapid photochemical inactivation of Ca2+-antagonists shows that Ca2+ entry directly activates contraction in frog heart. Nature (304): 635–638, 1983.PubMedCrossRefGoogle Scholar
  24. 23.
    DePover A, Lee SW, Matlib MA, Whitmer K, Davis BA, Powell T, and Schwartz A: [3H]-Nimodipine specific binding to cardiac myocytes and subcellular fractions. Biochem. Biophys. Res. Comm. (113): 185–191, 1983.PubMedCrossRefGoogle Scholar
  25. 23a.
    Millard RW, Grupp G, Grupp IL, DiSalvo J, DePover A, and Schwartz A: Chronotropic, inotropic, and vasodilator actions of diltiazem, nifedipine, and verapamil. Circ. Res. (52) Suppl. I: 29–39, 1983.Google Scholar
  26. 24.
    Marsh JD, Loh E, Lachance D, Barry WH, and Smith TW: Relationship of binding of a calcium channel blocker to inhibition of contraction in intact cultured embryonic chick ventricular cells. Circ. Res. (53): 539–543, 1983.PubMedCrossRefGoogle Scholar
  27. 25.
    Schwartz A and Triggle DJ: Cellular action of calcium channel blocking drugs. Ann. Rev. Med., 1983, (In press).Google Scholar
  28. 26.
    DePover A, Grupp IL, Grupp G, and Schwartz A: Diltiazem potentiates the negative inotropic action of nimodipine in heart. Biochem. Biophys. Res. Comm. (114): 922–929, 1983.PubMedCrossRefGoogle Scholar
  29. 27.
    Gonzolez-Serratos H, Valle-Aguilera R, Lathrop DA, Garcia M: Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling. Nature (298): 292–294, 1982.CrossRefGoogle Scholar
  30. 28.
    Dorrscheidt-Kafer M: The action of D600 on frog skeletal muscle: Facilitation of excitation-contraction coupling. Pflugers Arch. (309): 259–267, 1977.CrossRefGoogle Scholar
  31. 29.
    Reuter H and Seitz N: The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol. (London) (195): 451–470, 1968.Google Scholar
  32. 30.
    Langer GA, Frank JB, and Brady J: The myocardium. Int. Rev. Physiol. (9): 191–237, 1976.PubMedGoogle Scholar
  33. 31.
    Winegrad S and Shanes AM: Calcium flux and contractility in guinea pig. J. Gen. Physiol. (45): 371–394, 1962.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 32.
    Niedergerke R: Movements of Ca in frog heart ventricles at rest and during contractures. J. Physiol. (London) (167): 515–550, 1963.Google Scholar
  35. 33.
    Langer GA: Kinetic studies of calcium distribution in ventricular muscle of the dog. Circ. Res. (15): 393–405, 1964.PubMedCrossRefGoogle Scholar
  36. 34.
    Reeves JP and Sutko JL: Sodium-calcium ion exchange in cardiac membrane vesicles. Proc. Natl. Acad. Sci. (USA) (76): 590–594, 1979.CrossRefGoogle Scholar
  37. 35.
    Matlib MA and Schwartz A: Selective effects of diltiazem, a benzodiazepine calcium channel blocker, and diazepam, and other benzodiazepines on the Na+/Ca2+ exchange carrier system of heart and brain mitochondria. Life Sci. (32): 2837–2842, 1983.PubMedCrossRefGoogle Scholar
  38. 36.
    Fabiato A: Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from sarcoplasmic reticulum of a skinned cardiac cell from adult rat or rabbit ventricles. J. Gen. Physiol. (London) (78): 457–495, 1981.PubMedCrossRefGoogle Scholar
  39. 37.
    Entman ML, Allen JC, Bornet DP, Gillette PC, Wallick ET, and Schwartz A: Mechanisms of calcium accumulation and transport in cardiac relaxing system sarcoplasmic reticulum: effect of verapamil, D600, X537A, and X23187. J. Mol. Cell. Cardiol. (4): 681–687, 1971CrossRefGoogle Scholar
  40. 38.
    Wang T, Tsai L-I, Schwartz A: Effects of verapamil, diltiazem, nisoldipine, and felodipine on sarcoplasmic reticulum. Eur. J. Pharmacol. (In press).Google Scholar
  41. 39.
    Colvin RA, Pearson N, Massineo FC, and Katz AM: Effects of Ca channel blockers on Ca transport and Ca-ATPase in skeletal and cardiac sarcoplasmic reticulum vesicles. J. Cardiovasc. Pharmacol. (4): 935–941, 1982.PubMedCrossRefGoogle Scholar
  42. 40.
    Hirata M and Inamitsu T: Effect of diltiazem on the release of calcium from the canine fragmented cardiac sarcoplasmic reticulum. Jpn. J. Pharmacol. (33): 991–997, 1983.PubMedCrossRefGoogle Scholar
  43. 41.
    Page E and McCallister LP: Quantitative electron microscopic description of heart muscle cells. Am. J. Cardiol. (31): 172–181, 1973.PubMedCrossRefGoogle Scholar
  44. 42.
    Neely JR and Morgan HE: Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann. Rev. Physiol. (36): 413–459, 1974.CrossRefGoogle Scholar
  45. 43.
    Grupp G, Grupp IL, Johnson CL, Matlib MA, Rouslin W, Schwartz A, Wallick ET, Wang T, and Wisler P: Effects of RMI-12330A, a new inhibitor of adenylate cyclase on myocardial function and subcellular activity. Br. J. Pharmacol. (70): 429–442, 1980.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 44.
    Vaghy PL, Matlib MA, Szekeres L, and Schwartz A: Protective effects of verapamil and diltiazem against inorganic phosphate-induced impairment of oxidative phosphorylation of isolated heart mitochondria. Biochem. Pharmacol. (30): 2603–2610, 1981.PubMedCrossRefGoogle Scholar
  47. 45.
    Matlib MA, Vaghy PL, Epps DE, and Schwartz A: Action of certain calcium channel blockers and calmodulin antagonists on inorganic phosphate- induced swelling and inhibition of oxidative phosphorylation of heart mitochondria. Biochem. Pharmacol. (32): 2622–2625, 1983.PubMedCrossRefGoogle Scholar
  48. 46.
    Brierley GP: The uptake and extrusion of monovalent cations by isolated heart mitochondria. Mol. Cell. Biochem. (10): 41–62, 1976.PubMedCrossRefGoogle Scholar
  49. 47.
    Garlic PB, Radda GK, and Seeley PJ: Studies of acidosis in the ischemic heart by phosphorus nuclear magnetic resonance. Biochem. J. (183): 547–554, 1979.Google Scholar
  50. 48.
    Jennings RB and Ganóte CE: Structural changes in myocardium during acute ischemia. Circ. Res. (34) and 35 (Suppl. III): 156–172, 1974.Google Scholar
  51. 49.
    Jennings RB and Ganóte CE: Mitochondrial structure and function in acute myocardial ischemic injury. Circ. Res. (38) (Suppl. I): 80–91, 1976.Google Scholar
  52. 50.
    Crompton M, Moser R, Ludi H, and Carafoli E: The interrelationships between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur. J. Biochem. (82): 25–31, 1978.PubMedCrossRefGoogle Scholar
  53. 51.
    Carafoli E: The calcium cycle of mitochondria. FEBS Lett. (104): 1–5, 1979.PubMedCrossRefGoogle Scholar
  54. 52.
    Lee CO, Kang DH, Sokol JH, and Lee KS: Relation between intracellular Na+ ion activity and tension of sheep cardiac Purkinje fibers exposed to dihydro-ouabain. Biophys. J. (29): 315–330, 1980.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 53.
    Vaghy PL, Johnson JD, Matlib MA, Wang T, and Schwartz A: Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+-antagonist drugs. J. Biol. Chem. (257): 6000–6002, 1982.PubMedGoogle Scholar
  56. 54.
    Matlib MA, Lee SW, DePover A, and Schwartz A: A specific inhibitory action of certain benzothiazepines and benzodiazepines on the sodium- calcium exchange process of heart and brain mitochondria. Eur. J. Pharmacol. (89): 327–328, 1983.PubMedCrossRefGoogle Scholar
  57. 55.
    Saida K, and Van Breemen C: Mechanism of Ca2+ antagonist-induced vasodilation: Intracellular actions. Circ. Res. (52): 137–142, 1983.PubMedCrossRefGoogle Scholar
  58. 56.
    Mras S, and Sperelakis N: Comparison of 3H-bepridil and 3H-verapamil uptake into rabbit aortic rings. J. Cardiovasc. Pharmacol. (4): 777–783, 1982.PubMedCrossRefGoogle Scholar
  59. 57.
    Pang D, and Sperelakis N: Nifedipine, diltiazem, bepridil, and verapamil uptakes into cardiac and smooth muscles. Eur. J. Pharmacol. (87): 199–207, 1983.PubMedCrossRefGoogle Scholar
  60. 58.
    Nagao T, Matlib MA, Franklin D, Millard RW, and Schwartz A: Effects of diltiazem, a calcium antagonist, on regional myocardial function and mitochondria after coronary occlusion. J. Mol. Cell. Cardiol. (12): 29–43, 1980.PubMedCrossRefGoogle Scholar
  61. 59.
    Schwartz A, Wood JM, Allen JC, Bornet EP, Entman ML, Goldstein MA, Sordahl LA, and Suzuki M: Biochemical and morphologic correlates of cardiac ischemia. Am. J. Cardiol. (32): 46–61, 1973.PubMedCrossRefGoogle Scholar
  62. 60.
    Wood JM, Hanley HG, Entman ML, Hartley CJ, Swain JA, Busch U, Change CH, Lewis RM, Morgan WJ, and Schwartz A: Biochemical and morphological correlates of acute experimental myocardial ischemia in dog. Circ. Res. (44): 52–61, 1979.PubMedCrossRefGoogle Scholar
  63. 61.
    Rouslin W and Millard RW: Mitochondrial inner membrane enzyme defects in porcine myocardial ischemia. Am. J. Physiol. (240): H308–H313, 1981.PubMedGoogle Scholar
  64. 62.
    Bush LR, Li Y-P, Shlafer M, Jolly SR, and Lucchesi BR: Protective effects of diltiazem during myocardial ischemia in cat hearts. J. Pharmacol. Exptl. Ther. (218): 653–661, 1981.Google Scholar
  65. 63.
    Nayler WG, Ferrari R, and Williams A: Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic myocardium. Am. J. Cardiol. (46): 242–248, 1980.PubMedCrossRefGoogle Scholar
  66. 64.
    Fujiwara H, Ashraf M, Millard RW, Sato S, Schwartz A: Effects of diltiazem, a calcium channel inhibitor, in retarding cellular damage produced during myocardial ischemia in pigs. A morphometric and ultrastructural analysis. J. Am. Coll. Cardiol., (In press).Google Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1984

Authors and Affiliations

  • Mohammed A. Matlib
    • 1
  • Arnold Schwartz
    • 1
  • A. DePover
    • 1
  • G. Grupp
    • 1
  • I. Grupp
    • 1
  • S. W. Lee
    • 1
  • P. Vaghy
    • 1
  • T. Wang
    • 1
  1. 1.Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations