Advertisement

Effects of Inhibitors of Arachidonic Acid Metabolism and Calcium Entry on Hypoxic Contractions of the Isolated Canine Coronary Artery

  • Thomas J. Rimele
  • Paul M. Vanhoutte
Chapter
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 39)

Abstract

Constriction of large coronary arteries (coronary vasospasm) leads to an acute decrease in coronary blood flow. Although many factors [e.g. aggregating platelets (1), catecholamines (2–5), 5-hydroxytryptamine (3,4), prostaglandins (1,5-8), potassium ions (1-3,9), ergonovine maleate (3), hydroperoxides of arachidonic acid and leukotrienes (6–12), hypoxia and ischemia (3,4,13,14)] are able to cause contraction of coronary vascular smooth muscle, the exact etiology of coronary vasospasm is unknown.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen RA, Shepherd JT, Vanhoutte PM: Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science (221): 273–274, 1983.PubMedCrossRefGoogle Scholar
  2. 2.
    Rimele TJ, Rooke TW, Aarhus LL, Vanhoutte PM: Alpha1, adrenoceptors and calcium in isolated canine coronary arteries. J. Pharmacol. Exp. Ther., in press, 1983.Google Scholar
  3. 3.
    Van Nueten JM, Van Beek J, Vanhoutte PM: Inhibitory effect of lidoflazine on contractions of isolated canine coronary arteries caused by norepinephrine, 5-hydroxytryptamine, high potassium, anoxia and ergonovine maleate. J. Pharmacol. Exp. Ther. (213): 179–187, 1980.Google Scholar
  4. 4.
    Van Nueten JM, Vanhoutte PM: Effect of the Cat+ antagonist lidoflazine on normexic and anoxic contractions of canine coronary arterial smooth muscle. Eur. J. Pharmacol. (64): 173–176, 1980.PubMedCrossRefGoogle Scholar
  5. 5.
    Cohen RA, Shepherd JT, Vanhoutte PM: Prejunctional and postjunctional actions of endogenous norepinephrine at the sympathetic neuroeffector junction in canine coronary arteries. Circ. Res. (52): 16–25, 1983.PubMedCrossRefGoogle Scholar
  6. 6.
    Panzenbeck MJ, Kaley G. Leukotriene D4 reduces coronary blood flow in the anesthetized dog. Prostaglandins (25): 661–670, 1983.PubMedCrossRefGoogle Scholar
  7. 7.
    Trachte GJ, Lefer AM, Aharony D, Bryan Smith J: Potent constriction of cat coronary arteries by hydroperoxides of arachidonic acid and its blocking by anti-inflammatory agents. Prostaglandins (18): 909–914, 1979.PubMedCrossRefGoogle Scholar
  8. 8.
    Woodman OL, Dusting GJ: Coronary vasoconstriction induced by leukotrienes in the anaesthetized dog. Eur. J. Pharmacol. (86): 125–128, 1983.CrossRefGoogle Scholar
  9. 9.
    Kito G, Okuda H, Ohkawa S, Terao S, Kikuchi K: Contractile activities of leukotrienes C4 and D4 on vascular strips from rabbits. Life Sci. (29): 1325–1332, 1981.PubMedCrossRefGoogle Scholar
  10. 10.
    Boyd LM, Ezra D, Feuerstein G, Goldstein RE: Effects of FPL-55712 or indomethacin on leukotriene-induced coronary constriction in the intact pig heart. Eur. J. Pharmacol. (89): 307–311, 1983.PubMedCrossRefGoogle Scholar
  11. 11.
    Terashita ZI, Fukui H, Hirata M, Terao S, Ohkawa S, Nishikawa K, Kikuchi S: Coronary vasoconstriction and PGI2 release by leukotrienes in isolated guinea pig hearts. Eur. J. Pharmacol. (73): 357–361, 1981.CrossRefGoogle Scholar
  12. 12.
    Michelassi F, Landa L, Hill RD, Lowenstein E, Watkins WD, Petkau AJ, Zapol WM: Leukotriene D4: a potent coronary artery vasoconstrictor associated with impaired ventricular contraction. Science (217): 841–843, 1982.PubMedCrossRefGoogle Scholar
  13. 13.
    Rimele TJ, Vanhoutte PM: Acute anoxia augments the entry of Ca2+ in quiescent coronary vascular smooth muscle. Fed. Proc. (42): 1263, 1983 (abstract).Google Scholar
  14. 14.
    Gorman MW, Sparks HV, Jr: Progressive coronary vasoconstriction during relative ischemia in canine myocardium. Circ. Res. (51): 411–420, 1982.PubMedCrossRefGoogle Scholar
  15. 15.
    Vanhoutte PM: Effects of anoxia and glucose depletion on isolated veins of the dog. Am. J. Physiol. (230): 1261–1268, 1976.PubMedGoogle Scholar
  16. 16.
    Rimele TJ, Vanhoutte PM: Effects of inhibitors of arachidonic acid metabolism and calcium entry on responses to acetylcholine, potassium and norepinephrine in the isolated canine saphenous vein. J. Pharmacol. Exp. Ther. (225): 720–728, 1983.PubMedGoogle Scholar
  17. 17.
    De Mey JG, Vanhoutte PM: Anoxia and endothelium dependent reactivity of the canine femoral artery. J. Physiol. 335: 65–74, 1983.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Vanhoutte PM, Rimele TJ: Role of the endothelium in the control of vascular smooth muscle function. J. Physiol. (Paris) 78: 681–686, 1982–1983.Google Scholar
  19. 19.
    Belloni FL: The local control of coronary blood flow. Cardiovasc. Res. (13): 63–85, 1979.PubMedCrossRefGoogle Scholar
  20. 20.
    Berne RM: The role of adenosine in the regulation of coronary blood flow. Circ. Res. (47): 807–813, 1980.PubMedCrossRefGoogle Scholar
  21. 21.
    Borda LJ, Schuchlieb R, Henry PD: Hypoxic contraction of isolated canine coronary artery: Mediation by potassium-dependent exocytosis of norepinephrine. Circ. Res. (46): 870–879, 1980.PubMedCrossRefGoogle Scholar
  22. 22.
    Frame LH, Powell WJ: Progressive perfusion impairment during prolonged low flow myocardial ischemia in dogs. Circ. Res. (39): 269–276, 1976.PubMedCrossRefGoogle Scholar
  23. 23.
    Guyton RA, McClenathan JH, Michaelis LL: Evolution of regional ischemia distal to a proximal coronary stenosis: self-propagation of ischemia. Am. J. Cardiol. (40): 381–392, 1977.PubMedCrossRefGoogle Scholar
  24. 24.
    Busse R, Pohl U, Kellner C, Klemm U: Endothelial cells are involved in the vasodilatory response to hypoxia. Pflugers Arch. (397): 78–80, 1983.PubMedCrossRefGoogle Scholar
  25. 25.
    Kalsner S: The effect of hypoxia on prostaglandin output and on tone in isolated coronary arteries. Can. J. Physiol. Pharmacol. (55): 882–887, 1977.PubMedCrossRefGoogle Scholar
  26. 26.
    Samuelsson B: Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation. Science (220): 568–575, 1983.PubMedCrossRefGoogle Scholar
  27. 27.
    Serhan CN, Fridovich J, Goetzl EJ, Dunham PB, Weissmann G: Leukotriene B4 and phosphatidic acid are calcium ionophores. J. Biol. Chem. (257): 4746–4752, 1982.PubMedGoogle Scholar
  28. 28.
    Olin EH, Guengerich FP, Oates JA: Oxygenation of arachidonic acid by hepatic monooxygenases. J. Biol. Chem. (257): 3771–3781, 1982.Google Scholar
  29. 29.
    Capdevila J, Marnett LJ, Chacos N, Prough RA, Estabrook RW: Cytochrome P-450-dependent oxygenation of arachidonic acid to hydroxyicosa-tetraenoic acids. Proc. Natl. Acad. Sei. USA (79): 767–770, 1982.CrossRefGoogle Scholar
  30. 30.
    Paul RJ, Bauer M, Pease N: Vascular smooth muscle: Aerobic glycolysis linked to sodium and potassium transport process. Science (206): 1414–1416, 1979.PubMedCrossRefGoogle Scholar
  31. 31.
    Gellai M, Norton JM, Detar R: Evidence for direct control of coronary vascular tone by oxygen. Circ. Res. (32): 279–289, 1973.PubMedCrossRefGoogle Scholar
  32. 32.
    Pittman RN, Duling BR: Oxygen sensitivity of vascular smooth muscle. I. In vitro studies. Microvasc. Res. (6): 202–211, 1973.Google Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1984

Authors and Affiliations

  • Thomas J. Rimele
  • Paul M. Vanhoutte

There are no affiliations available

Personalised recommendations