Advertisement

Calcium Antagonistic Agents: Uptake into Various Muscles and their Effects on Calcium Binding

  • David C. Pang
  • Nick Sperelakis
Chapter
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 39)

Abstract

Calcium antagonistic drugs (1,2) belong to a new pharmacological class of organic compounds, which includes verapamil (3), bepridil (4), nifedipine (5), nitrendipine (6) and diltiazem (7) (Figure 1). These drugs interfere with the normal function of calcium in the cell, and they exert a strong negative inotropic effect on cardiac muscle. The normal action potential remains unchanged or is only slightly affected? that is, these drugs produce uncoupling of contraction from excitation. Their action can be greatly counteracted by increasing concentration of external calcium. Electrophysiological studies show that the mode of action of these drugs is due to a decrease of transmembrane conductance for calcium ions and, consequently, to a reduction of the slow inward calcium current.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fleckenstein, A.: Specific inhibitors and promoters of calcium action on the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial lesion. In: Harris, P., Opie, P. (eds) Calcium and the Heart. Academic Press, New York, 1970, pp 135–188.Google Scholar
  2. 2.
    Fleckenstein, A: Specific pharmacology of calcium in myocardium, cardiac pacemaker, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol. (17): 149–166, 1977.CrossRefGoogle Scholar
  3. 3.
    Kohlhardt, M., Mnich, Z.: Studies on the inhibitory effect of verapamil on the slow inward current in mammalian ventricular myocardium,. J. Mol. Cell. Cardiol. (10): 1037–1052, 1978.PubMedCrossRefGoogle Scholar
  4. 4.
    Vogel, S., Crampton, R., Sperelakis, N.: Blockade of myocardial slow channels by bepridil (CERM-1978). J. Pharmacol. Exp. Ther. (210): 378–385, 1979.PubMedGoogle Scholar
  5. 5.
    Kohlhardt, M., Fleckenstein, A.: Inhibition of the slow inward current by nifedipine in mammalian ventricular myocardium. Arch. Pharmacol. (298): 267–272, 1977.CrossRefGoogle Scholar
  6. 6.
    Bolger, G.T., Gengo, P., Klockowski, R., Luchowski, E., Siegel, H., Janis, R.A., Triggle, A.M., Triggle, D.J.: Characterization of binding of the Ca channel antagonist, [3H]nitrendipine to guinea pig ileal smooth muscle. J. Pharmacol. Exp. Ther. (225): 291–309, 1983.PubMedGoogle Scholar
  7. 7.
    Nakajima, H., Hoshiyama, W., Yamashita, K., Kiyomoto, A.: Effect of diltiazem on electrical and mechanical activity of isolated cardiac ventricular muscle of guinea pig. Jap. J. Pharmacol. (25): 383–392, 1975.PubMedCrossRefGoogle Scholar
  8. 8.
    Mras, S., Sperelakis, N.: Bepridil (CERM-1978) and verapamil depression of contractions of rabbit aortic rings. Blood Vessels (18): 196–205, 1981.PubMedGoogle Scholar
  9. 9.
    Pang, D.C., Sperelakis, N.: Inhibitory action of Bepridil (CERM-1978) on calcium binding to cardiac sarcolemma of guinea pig. Biochem. Pharmacol. (30) 2356–2358, 1981.PubMedCrossRefGoogle Scholar
  10. 10.
    Pang, D.C.: Effect of inotropic agents on calcium binding to isolated cardiac sarcolemma. Biochim. Biophys. Acta (598): 528–542, 1980.PubMedCrossRefGoogle Scholar
  11. 11.
    Pang, D.C., Sperelakis, N.: Nifedipine, diltiazem, bepridil, and verapamil uptakes into cardiac and smooth muscles. Eur. J. Pharmacol. (87): 199–207, 1983.PubMedCrossRefGoogle Scholar
  12. 12.
    Pang, D.C., Sperelakis, N.,: Uptake of [3H]nitrendipine into cardiac and smooth muscle. Biochem. Pharmacol. (32), 1660–1663, 1983.PubMedCrossRefGoogle Scholar
  13. 13.
    Pang, D.C., Briggs, F.N.: The effects of calcium and magnesium on the binding of β,ϒ-methylene ATP to sarcoplasmic reticulum from skeletal muscle. J. Biol. Chem. (252): 3262–3266, 1977.PubMedGoogle Scholar
  14. 14.
    Church, J., Zsoter, T.T.: Calcium antagonistic drugs. Mechanism of action. Can. J. Physiol. Pharmacol. (58): 254–264, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Sperelakis, N., Schneider, J.A.: A metabolic control mechanism for calci um ion influx that may protect the ventricular myocardial cells. Am. J. Cardiol. (37), 1079–1085, 1976.PubMedCrossRefGoogle Scholar
  16. 16.
    Colvin, R.A., Pearson, N., Messineo, F.C., Katz, A.M.: Effects of Ca channel blockers on Ca transport and Ca ATPase in skeletal and cardiac sarcoplasmic reticulum vesicles. J. Cardiovasc. Pharmacol. (4): 935–941, 1982.PubMedCrossRefGoogle Scholar
  17. 17.
    Cramb, G., Dow, J.W.: Uptake of bepridil into isolated ventricular myocytes. Biochem. Pharmacol. (32): 227–231, 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Hescheler, J., Pelzer, D., Trube, G., Trautwein, W.: Does the organic calcium channel blocker D-600 act from inside or outside on the cardiac cell membrane? Pflug. Archiv. (393): 287–291, 1982.CrossRefGoogle Scholar
  19. 19.
    Kates, R.E., Keefe, D., Schwartz, J., Harapat, S., Harrison, D., Kristen, E., Johnson, S.M.: Disposition kinetics of verapamil and norverapamil. Clin. Pharmacol. Ther. (29): 257, 1982.Google Scholar
  20. 20.
    Keefe, D.L., Kates, R.E.: Myocardial disposition and cardiac pharmacodynamics of verapamil in dog. J. Pharmacol. Exp. Ther. (220): 91–96, 1982.PubMedGoogle Scholar
  21. 21.
    Entman, M.L., Allen, J.C., Bornet, E.P., Gillette, P.C., Wallick, E.T., Schwartz, J.: Mechanisms of calcium accumulation and transport in cardiac relaxing system (sarcoplasmic reticulum vesicles): Effects of verapamil, D-600, X537A, and A23187. J. Mol. Cell. Cardiol. (4): 681–687, 1972.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1984

Authors and Affiliations

  • David C. Pang
  • Nick Sperelakis

There are no affiliations available

Personalised recommendations