Basic Features of The Frequency- and Voltage-Dependent Block By D600 of Calcium Channels in Ventricular Muscle

  • Terence F. McDonald
  • Dieter Pelzer
  • Wolfgang Trautwein
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 39)


The Ca-dependent, slow inward current (Isi) is of major importance to the heart since the current is intimately connected with excitation-contraction coupling, sinoatrial rhythm, atrioventricular transmission, and certain patterns of dysrhythmia. A variety of organic agents, of which verapamil and D600 (methoxyverapamil) have been best studied, block Ca channels and thereby reduce Isi in cardiac tissue (1–4). The consequences of this action include a depression of the action potential plateau and contraction in ventricular muscle (3,5) as well as a reduction in the sinus rate and a prolongation of conduction time through the AV node (6).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kohlhardt M, Bauer B, Krause H, Fleckenstein A: Differentiation of the transmembrane Na and Ca channel in mammalian cardiac fibres by the use of specific inhibitors. Pflugers Arch. (335): 309–322, 1972.PubMedCrossRefGoogle Scholar
  2. 2.
    Kass RS, Tsien RW: Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibres. J. gen. Physiol. (66): 169–192, 1975.PubMedCrossRefGoogle Scholar
  3. 3.
    Nawrath H, Ten Eick RE, McDonald TF, Trautwein W: On the mechanism underlying the action of D600 on slow inward current and tension in mammalian myocardium. Circulation Res. (40): 408–414, 1977.PubMedCrossRefGoogle Scholar
  4. 4.
    Noma A, Trautwein W: Relaxation of the ACh-induced potassium current in the rabbit sinoatrial node cell. Pflugers Arch. (377): 193–200, 1978.PubMedCrossRefGoogle Scholar
  5. 5.
    Bayer R, Hennekes R, Kaufmann R, Mannhold R: Inotropic and electrophysiological action of verapamil and D600 in mammalian myocardium. I. Pattern of iontropic effects of the racemic compounds. Naunyn-Schmiedeberg’s Arch. Pharmac. (290): 49–68, 1975.Google Scholar
  6. 6.
    Wit AL, Cranefield PF: Effect of verapamil on the sinoatrial and atrioventricular nodes of the rabbit and the mechanisms by which it arrests re-entrant atrioventricular nodal tachycardia. Circulation Res. (35): 413–425, 1974.PubMedCrossRefGoogle Scholar
  7. 7.
    McCans JL, Lindenmayer GE, Munson RG, Evans RW, Schwartz A: A dissociation of positive staircase (Bowditch) from ouabain-induced positive inotropism; use of verapamil. Circulation Res. (35): 439–447, 1974.PubMedCrossRefGoogle Scholar
  8. 8.
    Ehara T, Kaufmann R: The voltage- and time-dependent effects of (-)-verapamil on the slow inward current in isolated cat ventricular myocardium. J. Pharmac exp. Ther. (207): 49–55, 1978.Google Scholar
  9. 9.
    McDonald TF, Pelzer D, Trautwein W: On the mechanism of slow calcium channel block in heart. Pflugers Arch. (385): 175–179, 1980.PubMedCrossRefGoogle Scholar
  10. 10.
    Pelzer D, Trautwein W, McDonald TF: Calcium channel block and recovery from block in mammalian ventricular muscle treated with organic channel inhibitors. Pflügers Arch. (394): 97–105, 1982.PubMedCrossRefGoogle Scholar
  11. 11.
    Strichartz, GR: The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J. gen. Physiol. (62): 37–57, 1973.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Hille B: Local anestheticsrhydrophilic and hydrophobic pathways for the drug-receptor reaction. J. gen. Physiol. (69): 497–515, 1977.PubMedCrossRefGoogle Scholar
  13. 13.
    McDonald TF, Pelzer D, Trautwein W: Cat ventricular muscle treated with D600: effects on calcium and potassium currents. J. Physiol, (in the Press), 1984.Google Scholar
  14. 14.
    McDonald TF, Pelzer D, Trautwein W: Cat ventricular muscle treated with D600: characteristics of calcium channel block and unblock. J. Physiol, (in the Press), 1984.Google Scholar
  15. 15.
    Lee KS, Tsien RW: Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature (Lond.) (302): 790–794, 1983.PubMedCrossRefGoogle Scholar
  16. 16.
    McDonald TF, Trautwein W: Membrane currents in cat myocardium; separation of inward and outward components. J. Physiol. (274): 193–216, 1978.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Trautwein W, McDonald TF, & Tripathi, O: Calcium conductance and tension in mammalian ventricular muscles. Pflügers Arch. (354), 55–74, 1975.PubMedCrossRefGoogle Scholar
  18. 18.
    McDonald TF, Pelzer D, Trautwein W: Does the calcium current modulate the contraction of the accompanying beat? A study of E-C coupling in mammalian ventricular muscle using cobalt ions. Circulation Res. 49: 576–583, 1981.PubMedCrossRefGoogle Scholar
  19. 19.
    Kenyon JL, Gibbons WR: 4-Aminopyrimidine and the early outward current of sheep cardiac Purkinje fibres. J. gen. Physiol. 73, 139–157, 1979.PubMedCrossRefGoogle Scholar
  20. 20.
    Carmeliet E, Vereecke J: Electrogenesis of the action potential and automaticity. In Handbook of Physiology, The Cardiovascular System, vol. I, The Heart, ed. Berne, RM, pp. 269–334. Maryland: American Physiological Society, 1979.Google Scholar
  21. 21.
    Siegelbaum SA, Tsien RW: Calcium-activated transient outward current in calf cardiac Purkinje fibres. J. Physiol (299): 485–506, 1980.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Boyett MR: A study of the effect of the rate of stimulation on the transient outward current in sheep cardiac Purkinje fibres. J. Physiol: (319), 1–22, 1981.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Reuter H, Scholz H: A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J. Physiol. (264): 17–47, 1977.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Narahashi T: Chemicals as tools in the study of excitable membranes. Physiol. Rev. (54): 813–889, 1974.PubMedGoogle Scholar
  25. 25.
    Bustamante JO, McDonald TF: Sodium currents in segments of human heart cells. Science (220): 320–321, 1983.PubMedCrossRefGoogle Scholar
  26. 26.
    Khodorov B.I. Sodium inactivation and drug-induced immobilization of the gating charge in nerve membrane. Prog. Biophys. molec. Biol (37) 49–89, 1981.CrossRefGoogle Scholar
  27. 27.
    Cahalan MD, Shapiro BI, Aimers W: Relationship between inactivation of sodium channels and block by quaternary derivatives of local anesthetics and other compounds. In Progress in Anesthiology, ed. Fink BR, vol 2., Molecular Mechanisms of Anesthesia, pp. 17–33. New York, Raven Press: 1980.Google Scholar
  28. 28.
    Dörrscheidt-Käfer M: The action of D600 on frog skeletal muscle; facilitation of excitation-contraction coupling. Pfliigers Arch. (369): 259–267, 1977.PubMedCrossRefGoogle Scholar
  29. 29.
    Hescheler J, Pelzer D, Trube G, Trautwein W: Do organic calcium channel blockers act from inside or outside on the cardiac cell membrane? Pflügers Arch. (393): 287–291, 1982.PubMedCrossRefGoogle Scholar
  30. 30.
    Antman EM, Stone PH, Muller JE, Braunwald E: Calcium channel blocking agents in the treatment of cardiovascular disorders. I. Basic and clinical electrophysiologic effects. Ann. int. Med. (93): 875–885, (1980).Google Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1984

Authors and Affiliations

  • Terence F. McDonald
    • 1
    • 2
  • Dieter Pelzer
    • 1
    • 2
  • Wolfgang Trautwein
    • 1
    • 2
  1. 1.Department of Physiology and BiophysicsDalhousie UniversityHalifaxCanada
  2. 2.Physiologisches InstitutUniversität des SaarlandesHomburg/SaarWest Germany

Personalised recommendations