Advertisement

Metal Atoms as Reactive Intermediates

  • Kenneth J. Klabunde

Abstract

Fully two-thirds of the Periodic Table is made up of metals. For the most part these metals exist in nature as oxides, silicates, or other inorganic compounds. When reduced to their metallic bulk state, they are relatively unreactive as chemicals, particularly the noble and refractory metals. Some additional reactivity is gained when the metal is finely divided, providing a high surface area. For example, clean, high-surface-area nickel, iron, uranium, and other metals are pyrophoric. This greater reactivity in the highly divided state is, of course, the basis for production of supported metals as catalysts. Generally, it is the high surface area that provides for increased reaction rates, although certainly the type of crystalline faces available for the catalytic act is also important.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. (a)
    G. C. Bond, Catalysis by Metals, Academic Press, New York (1962)Google Scholar
  2. G. C. Bond, Heterogeneous Catalysis: Principles and Applications, Clarendon Press, Oxford (1974).Google Scholar
  3. 2.
    J. H. Sinfelt, Acc. Chem. Res. 10, 15 (1977), and references therein.Google Scholar
  4. 3. (a)
    J. M. Thomas and W. J. Thomas, Introduction to the Principles of Heterogeneous Catalysis, Academic Press, New York (1967)Google Scholar
  5. J. M. Thomas and W. J. Thomas, International Symposium on the Relations Between Heterogeneous and Homogeneous Catalytic Phenomenon, Brussels, Elsevier, Amsterdam (1975).Google Scholar
  6. 4.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3rd ed., Wiley Inter- science Publishers, New York (1972).Google Scholar
  7. 5.
    P. S. Skell, J. J. Havel, and M. J. McGlinchey, Acc. Chem. Res. 6, 97 (1973).Google Scholar
  8. 6. (a)
    H. M. Pohlit, W. Erwin, T. H. Lin, and R. M. Lemmon, J. Phys. Chem. 75, 2555 (1971)Google Scholar
  9. (b).
    T. Lin and R. Lemmon, Phys. Chem. 75, 3524 (1971)Google Scholar
  10. (c).
    A. F. Voight, G. F. Palins, and R. L. Williams, Phys. Chem. 75, 2248, 2253 (1971)Google Scholar
  11. (d).
    R. L. Williams and F. S. Rowland, J. Am. Chem. Soc. 94, 1047 (1972)Google Scholar
  12. (e).
    S. C. Lee and C. O. Hower, J. Phys. Chem. 75, 2685 (1971)Google Scholar
  13. (f).
    C. M. Wai and R. L. Jennings, J. Phys. Chem. 75, 2698 (1971).Google Scholar
  14. M. J. Welch and A. P. Wolf, J. Am. Chem. Soc. 91, 6584 (1969).Google Scholar
  15. 7. (a)
    M. Marshall, C. MacKay, and R. Wolfgang, J. Am. Chem. Soc. 86, 4741, 4747 (1964).Google Scholar
  16. 8.
    P. S. Skell and J. E. Girard, J. Am. Chem. Soc. 94, 5518 (1972).Google Scholar
  17. 9.
    P. L. Timms, Adv. Inorg. Radiochem. 14, 121 (1972) ( H. J. Emeleus and A. G. Sharpe, Eds.).Google Scholar
  18. 10.
    S. Dushman, Vacuum Technique, John Wiley and Sons, New York (1949), p. 745.Google Scholar
  19. 11.
    E. W. R. Steacie, Atomic and Free Radical Reactions, Vols. I and II, Reinhold, New York (1954).Google Scholar
  20. 12.
    P. S. Skell and R. J. Petersen, J. Am. Chem. Soc. 86, 2530 (1964).Google Scholar
  21. 13.
    R. G. Doerr and P. S. Skell, J. Am. Chem. Soc. 89, 3062 (1967).Google Scholar
  22. 14.
    R. G. Doerr and P. S. Skell, J. Am. Chem. Soc. 89, 4684 (1967).Google Scholar
  23. 15.
    P. S. Skell and L. D. Wescott, Jr., J. Am. Chem. Soc. 85, 1023 (1963)Google Scholar
  24. P. S. Skell, L. D. Wescott, Jr., J. P. Golstein, and R. R. Engel, J. Am. Chem. Soc. 87, 2829 (1965).Google Scholar
  25. 16.
    P. L. Timms, R. A. Kent, T. C. Ehlert, and J. L. Margrave, J. Am. Chem. Soc. 87, 1824.Google Scholar
  26. 17.
    P. L. Timms, Chem. Commun., 1525 (1968).Google Scholar
  27. 18.
    P. L. Timms, Chem. Commun., 1033 (1969).Google Scholar
  28. 19.
    K. J. Klabunde, Acc. Chem. Res. 8, 393 (1975).Google Scholar
  29. 20.
    B. Siegel, Quart. Rev. 19, 77 (1965).Google Scholar
  30. 21.
    K. J. Klabunde, Chem. Tech. 6, 624 (1975).Google Scholar
  31. 22.
    J. Feldman, M. Friz, and F. Stetter, Res. Dev. 27, 49 (1976).Google Scholar
  32. 23.
    C. A. Baer, Res. Dev. 25, 51 (1974)Google Scholar
  33. F. Adams, Res. Dev. 26, 45 (1975).Google Scholar
  34. 24.
    Sylvania Emissive Products Catalog, Sylvania, Box 220, Exeter, New Hampshire 03833.Google Scholar
  35. 25.
    Vacuum Evaporation Sources Catalog, R. D. Mathis Co., 2840 Gundry Ave., Long Beach, California 90806.Google Scholar
  36. 26.
    H. F. Efner, Ph.D. Thesis, University of North Dakota (1975)Google Scholar
  37. Metal Atom Reactor Technical Bulletin, Kontes-Martin Glass Co., 1916 Greenleaf St., Evanston, Illinois 60204Google Scholar
  38. G. V. Planer Ltd., Windmill Rd., Sunbury-on-Thames, Middlesex, England.Google Scholar
  39. 27.
    New Synthetic Methods, Vol. 3, Verlag Chemie, Weinheim, West Germany (1975), based on lectures delivered at the symposium “ Metal Atoms in Chemical Synthesis,” held under the auspices of the Merck’sche Gesellschaft für Kunst und Wissenschaft e. v. at Darmstadt (May 12–14, 1974)Google Scholar
  40. New Synthetic Methods, Angew. Chem. 87, 213–345 (1975)Google Scholar
  41. New Synthetic Methods, Angew. Chem. Int. Ed. English 14, 193–321 (1975)Google Scholar
  42. (a).
    H. W. Kohlschütter, “Relationships between the Chemistry of Dispersed Metals and Chemical Syntheses with Metal Atoms,” p. 193Google Scholar
  43. (b).
    P. S. Skell and M. J. McGlinchey, “Reactions of Transition Metals with Organic Substrates,” p. 195Google Scholar
  44. (c).
    G. C. Pimentel, “Isolation and Reactions of Metal Atoms in Matrices,” p. 199Google Scholar
  45. (d).
    M. Auwarter, “Reactions between Metal Atoms and Gases during the Production of their Films in High Vacuum,” p. 207Google Scholar
  46. (e).
    R. Niedermayer, “ Formation of Ad-layers and Clusters on Co-Condensation of Metal Vapors on Solid Surfaces,” p. 212Google Scholar
  47. (f).
    W. Reichelt, “Production and Condensation of Metal Vapors in Large Quantities,” p. 218Google Scholar
  48. (g).
    P. L. Timms, “Synthetic Reactions of Metal Atoms at Temperatures of 10 to 273°K,” p. 273Google Scholar
  49. (h).
    E. A. Koerner von Gustorf, O. Jaenicke, O. Wolfbeis, and C. R. Eady, “The Laser-Evaporation of Metals and its Application to Organometallic Synthesis,” p. 278Google Scholar
  50. (i).
    K. J. Klabunde, “Reactions of Metal Atoms with Fluorocarbons,” p. 287Google Scholar
  51. (j).
    E. P. Kundig, M. Moskovits, and G. A. Ozin, “Transition Metal Atoms in Synthesis of Binuclear Complexes,” p. 292Google Scholar
  52. (K).
    J. J. Turner, “Photochemistry in Matrices and its Relevance to Atom Synthesis,” p. 304Google Scholar
  53. (l).
    R. K. Sheline and J. L. Slater, “Spectral Evidence for Lanthanoid and Actinoid Carbonyl Compounds,” p. 309.Google Scholar
  54. 28.
    P. S. Skell, Symposium on “Atomic Species as Synthetic Reagents,” 170th National ACS Meeting, Chicago, Illinois, August 1975, paper INOR 57.Google Scholar
  55. 29.
    M. L. H. Green and D. Young, Symposium on “:Atomic Species as Synthetic Reagents,” 170th National ACS Meeting, Chicago, Illinois, August 1975, paper INOR 118.Google Scholar
  56. 30.
    F. W. S. Benfield, M. L. H. Green, J. S. Ogden, and D. Young, J. Chem. Soc. Chem. Commun., 866 (1973).Google Scholar
  57. 31.
    M. T. Anthony, M. L. H. Green, and D. Young, J. Chem. Soc. Dalton, 1419 (1975).Google Scholar
  58. 32.
    V. M. Akhmedov, M. T. Anthony, M. L. H. Green, and D. Young, J. Chem. Soc. Dalton, 1412 (1975).Google Scholar
  59. 33.
    V. M. Akhmedov, M. T. Anthony, M. L. H. Green, and D. Young, J. Chem. Soc. Chem. Commun., 777 (1974).Google Scholar
  60. 34.
    M. L. H. Green and D. Young, Phys. Bull., 350 (August 1975).Google Scholar
  61. 35.
    M. Moskovits and G. A. Ozin, Eds., Cryochemistry Wiley Interscience, New York (1976)Google Scholar
  62. (a).
    M. Moskovits and G. A. Ozin, “Techniques of Matrix Cryochemistry,” p. 9Google Scholar
  63. (b).
    P. L. Timms, “Techniques of Preparative Cryochemistry,” p. 61Google Scholar
  64. (c).
    M. J. McGlinchey and P. S. Skell, “Organometallic and Organic Syntheses using Main Group Elemental Vapors,” p. 137Google Scholar
  65. (d).
    M. J. McGlinchey and P. S. Skell, “Organometallic and Organic Syntheses Involving Transition Metal Vapors,” p. 167Google Scholar
  66. (e).
    L. Andrews, “Infrared and Raman Spectroscopic Studies of Alkali-Metal Atom Matrix Reaction Products,” p. 195Google Scholar
  67. (f).
    S. J.Ogden, “Matrix-Isolation Studies Involving Main Group Metals,” p. 231Google Scholar
  68. (g).
    M. Moskovits and G. A. Ozin, “Matrix Cryochemistry using Transition Metal Atoms,” p. 261Google Scholar
  69. (h).
    M. Moskovits and G. A. Ozin, “Synthesis of Transition Metal Diatomic Molecules and Binuclear Complexes using Metal Atom Cocondensation Techniques,” p. 395Google Scholar
  70. (i).
    D. M. Gruen, “Spectroscopic Identification and Characterization of Matrix-Isolated Atoms,” p. 441Google Scholar
  71. (j).
    J. Burdett and J. J. Turner, “Photochemistry in Low Temperature Matrices,” p. 493.Google Scholar
  72. 36.
    R. MacKenzie and P. L. Timms, J. Chem. Soc. Chem. Commun., 650 (1974).Google Scholar
  73. 37.
    P. S. Skell and M. S. Cholod, J. Am. Chem. Soc. 91, 6035 (1969).Google Scholar
  74. 38.
    K. J. Klabunde, H. F. Efner, T. O. Murdock, and R. Ropple, J. Am. Chem. Soc. 98, 1021 (1976).Google Scholar
  75. 39.
    B. Meyer, Low Temperature Spectroscopy, Elsevier, New York (1971).Google Scholar
  76. 40.
    H. Hallam, Vibrational Spectroscopy of Trapped Species, John Wiley and Sons, New York (1972).Google Scholar
  77. 41.
    A.M. Bass and H. P. Broida, Formation and Trapping of Free Radicals, Academic Press, New York (1960).Google Scholar
  78. 42.
    G. C. Pimentel, Spectrochim. Acta 12, 94 (1958)Google Scholar
  79. G. C. Pimentel, Pure Appl. Chem. 4, 61 (1962)Google Scholar
  80. E. Whittle, D. A. Dows, and G. C. Pimentel, J. Chem. Phys. 22, 1943 (1954).Google Scholar
  81. 43.
    M. McCarty, Jr. and G. W. Robinson, Mol. Phys. 2, 415 (1959).Google Scholar
  82. 44.
    O. Schnepp, J. Phys. Chem. Solids 17, 188 (1961).Google Scholar
  83. 45.
    L. Brewer, B. Meyer, and G. D. Brabson, J. Chem. Phys. 43, 3973 (1965).Google Scholar
  84. 46.
    W. R. M. Graham and W. Weltner, Jr., J. Chem. Phys. 56, 4400 (1972).Google Scholar
  85. 47.
    W. L. S. Andrews and G. C. Pimentel, J. Chem. Phys. 44, 2527 (1966)Google Scholar
  86. W. L. S. Andrews and G. C. Pimentel, J. Chem. Phys. 47, 3637 (1967).Google Scholar
  87. 48.
    W. L. S. Andrews and G. C. Pimentel, J. Chem. Phys. 44, 2361 (1966).Google Scholar
  88. 49.
    J. K. Burdett and J. J. Turner, J. Chem. Soc. D, 885 (1971).Google Scholar
  89. 50.
    M. Moskovits and G. A. Ozin, J. Chem. Phys. 58, 1251 (1973).Google Scholar
  90. 51.
    P. Kundig, M. Moskovits, and G. A. Ozin, J. Mol. Structure 14, 137 (1972).Google Scholar
  91. 52.
    H. Huber, E. P. Kundig, M. Moskovits, and G. A. Ozin, Nature 235, 98 (1972).Google Scholar
  92. 53.
    M. Moskovits and G. A. Ozin, J. Appl. Spectrosc. 26, 481 (1972).Google Scholar
  93. 54. (a)
    K. J. Klabunde, Symposium on “The Place of Transition Metals in Organic Synthesis,” in Ann. N. Y. Acad. Sci. 295, 83 (1977)Google Scholar
  94. (b).
    K. J. Klabunde, Chem. Eng. News,. 32 (January 24, 1977)Google Scholar
  95. 55.
    J. Curry and M. Polanyi, Z. Phys. Chem. Abt. B 20, 276 (1933)Google Scholar
  96. W. Heller and M. Polanyi, Trans. Faraday Soc. 32, 633 (1936).Google Scholar
  97. 56.
    H. Hartel and M. Polanyi, Z. Phys. Chem. Abt. B 11, 97 (1930).Google Scholar
  98. 57.
    H. Hartel, N. Meer, and M. Polanyi, Z. Phys. Chem. Abt. B 19, 139 (1932).Google Scholar
  99. 58.
    J. N. Harsnape, J. M. Stevels, and E. Warhurst, Trans. Faraday Soc. 36, 465 (1940).Google Scholar
  100. 59.
    C. E. H. Bawn and W. J. Dunning, Trans. Faraday Soc. 35, 185 (1939)Google Scholar
  101. C. E. H. Bawn and J. Milsted, Trans. Faraday Soc. 35, 889 (1939).Google Scholar
  102. 60.
    M. G. Evans and E. Warhurst, Trans. Faraday Soc. 35, 593 (1939).Google Scholar
  103. 61.
    J. W. Hodgins and R. L. Haines, Can.J. Chem. 30, 473 (1952).Google Scholar
  104. 62.
    E. Warhurst, Quart. Rev. 5, 44 (1951).Google Scholar
  105. 63.
    A. G. Evans and H. Walker, Trans. Faraday Soc. 40, 384 (1944).Google Scholar
  106. 64.
    E. Whittle, Ph.D. Thesis, Manchester (1951).Google Scholar
  107. 65.
    E. Warhurst, Trans. Faraday Soc. 35, 674 (1939).Google Scholar
  108. 66.
    F. Fairbrother and E. Warhurst, Trans. Faraday Soc. 31, 987 (1935).Google Scholar
  109. 67.
    C. E. H. Bawn, Discussions Faraday Soc. 2, 145 (1947).Google Scholar
  110. 68.
    C. E. H. Bawn and A. G. Evans, Trans. Faraday Soc. 33, 1571 (1937).Google Scholar
  111. 69.
    B. Mile, Angew. Chem. 80, 519 (1968)Google Scholar
  112. B. Mile, Angew. Chem. Int. Ed. English 7, 507 (1968).Google Scholar
  113. 70.
    J. E. Bennett, B. Mile, and A. Thomas, Chem. Commun., 265 (1965)Google Scholar
  114. J. E. Bennett, B. Mile, and A. Thomas, Proc. R. Soc. London Ser. A 293, 246 (1966).Google Scholar
  115. 71.
    D. E. Milligan and M. E. Jacox, J. Chem. Phys. 47, 5146 (1967).Google Scholar
  116. 72.
    L. Y. Tan and G. C. Pimentel, J. Chem. Phys. 48, 5202 (1968).Google Scholar
  117. 73.
    L. Andrews, J. Chem. Phys. 48, 972, 979 (1968).Google Scholar
  118. 74.
    L. Andrews and T. G. Carver, J. Chem. Phys. 49, 896 (1968).Google Scholar
  119. 75.
    T. G. Carver and L. Andrews, J. Chem. Phys. 50, 4223, 4235 (1969).Google Scholar
  120. 76.
    T. G. Carver and L. Andrews, J. Chem. Phys. 50, 5100 (1969)Google Scholar
  121. L. Andrews and D. W. Smith, J. Chem. Phys. 53, 2956 (1970)Google Scholar
  122. L. Andrews and D. W. Smith, J. Chem. Phys. 55, 5295 (1971)Google Scholar
  123. D. W, Smith and L. Andrews, J. Chem. Phys. 58, 5222 (1973)Google Scholar
  124. R. C. Spiker, Jr. and L. Andrews, J. Chem. Phys. 58, 702, 713 (1973).Google Scholar
  125. 77.
    P. S. Skell and R. J. Petersen, J. Am. Chem. Soc. 86, 2530 (1964).Google Scholar
  126. 78.
    R. G. Doerr and P. S. Skell, J. Am. Chem. Soc. 89, 3062 (1967)Google Scholar
  127. R. G. Doerr and P. S. Skell, J. Am. Chem. Soc. 89, 4684 (1967).Google Scholar
  128. 79.
    P. S. Skell and E. J. Goldstein, J. Am. Chem. Soc. 86, 1442 (1964).Google Scholar
  129. 80.
    Private communications with J. E. Girard and P. S. Skell; also cf. References 8 and 28c.Google Scholar
  130. 81. (a)
    P. L. Timms, Chem. Commun., 1525 (1968)Google Scholar
  131. (b).
    P. L. Timms, J. Chem. Soc. Dalton., 830 (1972)Google Scholar
  132. 82.
    A. Cairncross and W. A. Sheppard, J. Am. Chem. Soc. 90, 2186 (1968)Google Scholar
  133. W. T. Miller and R. J. Burnard, J. Am. Chem. Soc. 90, 7367 (1968)Google Scholar
  134. W. T. Miller, R. H. Snider, and R. J. Hummel, J. Am. Chem. Soc. 91, 6532 (1969)Google Scholar
  135. K. K. Sum and W. T. Miller, J. Am. Chem. Soc. 92, 6985 (1970)Google Scholar
  136. A. E. Jukes, S. S. Dua, and H. Gilman, J. Organomet. Chem. 12, 24 (1968)Google Scholar
  137. R. J. DePasquale and C. Tamborski, J. Org. Chem. 34, 1736 (1969).Google Scholar
  138. 83.
    K. J. Klabunde, J. Fluor. Chem. 7, 95 (1976).Google Scholar
  139. 84.
    P. S. Skell, K. J. Klabunde, J. H. Plonka, J. S. Roberts, and D. L. Williams-Smith, J. Am. Chem. Soc. 95, 1547 (1973)Google Scholar
  140. P. S. Skell and J. H. Plonka, J. Am. Chem. Soc. 92, 836 (1970).Google Scholar
  141. 85.
    J. E. McMurry, private communications; J. E. McMurry and M. P. Fleming, J. Org. Chem. 41, 896 (1976).Google Scholar
  142. 86.
    J. Gladysz, J. Fulcher, and S. Tagashi, J. Org. Chem. 41, 3647 (1976)Google Scholar
  143. J. Gladysz, private communications.Google Scholar
  144. 87.
    L. D. Wescott, Jr., C. Williford, F. Parks, M. Dowling, S. Sublett, and K. J. Klabunde, J. Am. Chem. Soc. 98, 7853 (1976).Google Scholar
  145. 88.
    L. Friedman and H. Schechter, J. Am. Chem. Soc. 83, 3159 (1961).Google Scholar
  146. 89.
    K. J. Klabunde, J. Y. F. Low, and M. S. Key, J. Fluor. Chem. 2, 207 (1972).Google Scholar
  147. 90.
    R. F. Heck, J. Am. Chem. Soc. 86, 2796 (1964).Google Scholar
  148. 91.
    J. K. Stille and K. S. Y. Lau, J.Am. Chem. Soc. 98, 5841 (1976), and references therein.Google Scholar
  149. 92.
    A. V. Kramer and J. A. Osborn, J. Am. Chem. Soc. 96, 7832 (1974).Google Scholar
  150. 93.
    P. K. Wong, K. S. Y. Lau, and J. K. Stille, J. Am. Chem. Soc. 96, 5956 (1974)Google Scholar
  151. K. S. Y. Lau, R. W. Fries, and J. K. Stille, J. Am. Chem. Soc. 96, 4983 (1974).Google Scholar
  152. 94.
    K. J. Klabunde and J. Y. F. Low, J. Organomet. Chem. 51, C-33 (1973).Google Scholar
  153. 95.
    K. J. Klabunde and J. Y. F. Low, J. Am. Chem. Soc. 96, 7674 (1974).Google Scholar
  154. 96.
    J. S. Roberts and K. J. Klabunde, J. Organomet. Chem. 85, C-13 (1975).Google Scholar
  155. 97.
    J. S. Roberts and K. J. Klabunde, J. Am. Chem. Soc. 99, 2509 (1977).Google Scholar
  156. 98.
    B. B. Anderson, C. M. Behrens, L. Radonovich, and K. J. Klabunde, J. Am. Chem. Soc. 98, 5390 (1976).Google Scholar
  157. 99.
    K. J. Klabunde and J. S. Roberts, J. Organomet. Chem. 137, 113 (1977).Google Scholar
  158. 100.
    J. S. Roberts, Ph.D. Thesis, University of North Dakota, Grand Forks, North Dakota (1975), also, unpublished work of J. S. Roberts in this laboratory.Google Scholar
  159. 101.
    K. J. Klabunde, M. S. Key, and J. Y. F. Low, J. Am. Chem. Soc. 94, 999 (1972).Google Scholar
  160. 102.
    B. B. Anderson and K. J. Klabunde, unpublished results.Google Scholar
  161. 103.
    B. B. Anderson, K. Neuenschwander, and K. J. Klabunde, unpublished results.Google Scholar
  162. 104.
    M. J. Piper and P. L. Timms, J. Chem. Soc. Chem. Commun., 50 (1972).Google Scholar
  163. 105.
    P. S. Skell and J. J. Havel, J. Am. Chem. Soc. 93, 6687 (1971).Google Scholar
  164. 106.
    P. M. Treichel and F. G. A. Stone, Adv. Organomet. Chem. 1, 143 (1964)Google Scholar
  165. P. M. Maitlis, The Organic Chemistry of Palladium, Vol. 1, Academic Press, New York (1971).Google Scholar
  166. 107.
    B. B. Anderson, M. Bader, and K. J. Klabunde, J.Am. Chem. Soc., in preparationGoogle Scholar
  167. B. B. Anderson, Ph.D. Thesis, University of North Dakota, Grand Forks, North Dakota (1980)Google Scholar
  168. L. Radonovich, F. Koch, B. B. Anderson, and K. J. Klabunde, J. Am. Chem. Soc., submitted for publication.Google Scholar
  169. 108.
    R. J. Dellaca and B. R. Penford, Inorg. Chem. 11, 1855 (1972)Google Scholar
  170. B. M. Hoffman, D. L. Diemente, and F. Basolo, J. Am. Chem. Soc. 92, 61 (1970). 109.Google Scholar
  171. 109. (a)
    P. W. Owen and P. S. Skell Tetrahedron Lett. 1807 (1972)Google Scholar
  172. (b).
    P. S. Skell and P. W. Owen, J. Am. Chem. Soc. 94, 5434 (1972)Google Scholar
  173. 110.
    M. J. McGlinchey and T. S. Tan, Inorg. Chem. 14, 1209 (1975).Google Scholar
  174. 111.
    K. J. Klabunde, J. Y. F. Low, and H. F. Efner, J. Am. Chem. Soc. 96, 1984 (1974).Google Scholar
  175. 112.
    H. F. Efner and W. B. Fox, private communications.Google Scholar
  176. 113.
    J. Y. F. Low, Ph.D. Thesis, University of North Dakota, Grand Forks, North Dakota (1975).Google Scholar
  177. 114.
    W. L. S. Andrews and G. C. Pimentel, J. Chem. Phys. 44, 2361 (1966).Google Scholar
  178. 115.
    D. E. Milligan and M. E. Jacox, J. Chem. Phys. 55, 3404 (1971).Google Scholar
  179. 116.
    D. E. Tevault and L. Andrews, J. Phys. Chem. 77, 1640, 1646 (1973).Google Scholar
  180. 117.
    D. E. Milligan, M. E. Jacox, and W. A. Guillory, J. Chem. Phys. 52, 3864 (1970).Google Scholar
  181. 118.
    D. M. Thomas and L. Andrews, J. Mol. Spectrosc. 50, 220 (1974)Google Scholar
  182. B. S. Ault and L. Andrews, J. Chem. Phys. 62, 2312, 2320 (1975)Google Scholar
  183. L. Andrews and R. C. Spiker, Jr., J. Phys. Chem. 76, 3208 (1972)Google Scholar
  184. R. C. Spiker and L. Andrews, J. Chem. Phys. 59, 1851 (1973)Google Scholar
  185. L. Andrews, J. Am. Chem. Soc. 95, 4487 (1973)Google Scholar
  186. L. Andrews and R. C. Spiker, J. Chem. Phys. 59, 1863 (1973).Google Scholar
  187. 119.
    L. Andrews, J. Chem. Phys. 50, 4288 (1969)Google Scholar
  188. L. Andrews and R. R. Smardzewski, J. Chem. Phys. 58, 2258 (1973)Google Scholar
  189. R. R. Smardzewski and L. Andrews, J. Chem. Phys. 57, 1327 (1972)Google Scholar
  190. R. R. Smardzewski and L. Andrews, J. Phys. Chem. 77, 801 (1973)Google Scholar
  191. L. Andrews, J. Phys. Chem. 73, 3922 (1969)Google Scholar
  192. L. Andrews, J. Chem. Phys. 54, 4935 (1971)Google Scholar
  193. L. Andrews, J. T. Hwang, and C. Trindle, J. Phys. Chem. 77, 1065 (1973).Google Scholar
  194. 120.
    L. Brewer and J. L. F. Wang, J. Chem. Phys. 56, 4305 (1972).Google Scholar
  195. 121.
    R. C. Spiker, Jr., L. Andrews, and C. Trindle, J. Am. Chem. Soc. 94, 2401 (1972).Google Scholar
  196. 122.
    M. E. Jacox and D. E. Milligan, J. Mol. Spectrosc. 43, 148 (1972).Google Scholar
  197. 123.
    W. F. Howard, Jr. and L. Andrews, J. Am. Chem. Soc. 95, 2056 (1973)Google Scholar
  198. W. F. Howard, Jr. and L. Andrews, Inorg. Chem. 14, 767 (1975)Google Scholar
  199. W. F. Howard, Jr. and L. Andrews, Inorg. Chem. 14, 409 (1975).Google Scholar
  200. 124.
    P. H. Kasai and D. McLeod, J. Chem. Phys. 51, 1250 (1969).Google Scholar
  201. 125.
    A. F. Garito and A. J. Heeger, Acc. Chem. Res. 7, 232 (1974).Google Scholar
  202. 126.
    B. H. Schechtman, S. F. Lin, and W. E. Spicer, Phys. Rev. Lett. 34, (11), 667 (1975)Google Scholar
  203. F. R. Gamble and H. M. McConnell, Phys. Lett. 26A, 162 (1968).Google Scholar
  204. 127.
    J. K. Kochi, Acc. Chem. Res. 7, 351 (1974).Google Scholar
  205. 128.
    H. M. McConnell, F. R. Gamble, and B. M. Hoffman, Proc. Nat. Acad. Sci., 57, 1131 (1967)Google Scholar
  206. B. M. Hoffman, F. R. Gamble, and H. M. McConnell, J. Am. Chem. Soc. 89, 27 (1967).Google Scholar
  207. 129.
    K. J. Klabunde and H. F. Efner, J. Fluor. Chem. 4, 114 (1974).Google Scholar
  208. 130.
    P. S. Skell, Proc. Int. Congr. Pure Appl. Chem. 23, 215 (1971).Google Scholar
  209. 131.
    P. S. Skell, D. L. Williams-Smith, and M. J. McGlinchey, J. Am. Chem. Soc. 95, 3337 (1973).Google Scholar
  210. 132.
    P. S. Skell and L. R. Wolf, J. Am. Chem. Soc. 94, 7919 (1972).Google Scholar
  211. 133.
    P. Kasai and D. McLeod, Jr., J. Am. Chem. Soc. 97, 5609 (1975).Google Scholar
  212. 134.
    G. A. Ozin, Symposium on “Atomic Species as Synthetic Reagents,” 170th National ACS Meeting, Chicago, Illinois, August 1975, paper INOR 97Google Scholar
  213. P. L. Timms, Symposium on “Atomic Species as Synthetic Reagents,” 170th National ACS Meeting, Chicago, Illinois, August 1975, paper INOR 119.Google Scholar
  214. 135.
    P. S. Skell, J. J. Havel, D. L. Williams-Smith, and M. J. McGlinchey, J. Chem. Soc. Chem. Commun., 1098 (1972).Google Scholar
  215. 136.
    H. Bonnemann, Angew. Chem., 82, 699 (1970)Google Scholar
  216. H. Bonnemann, Angew. Chem. Internat. Ed. Engl. 9, 736 (1970).Google Scholar
  217. 137.
    P. A. Pinke and R. G. Miller, J. Am. Chem. Soc. 96, 4221 (1974)Google Scholar
  218. P. A. Pinke, R. D. Stauffer, and R. G. Miller, J.Am. Chem. Soc. 96, 4229 (1974); and references therein.Google Scholar
  219. 138.
    R. M. Atkins, R. MacKenzie, P. L. Timms, and T. W. Turney, J. Chem. Soc. Chem. Commun., 764 (1975).Google Scholar
  220. 139.
    H. Huber, G. A. Ozin, and W. J. Power, J. Am. Chem. Soc. 98, 6508 (1976).Google Scholar
  221. 140.
    K. Fischer, K. Jonas, and G. Wilke, Angew. Chem. 85, 620 (1973)Google Scholar
  222. K. Fischer, K. Jonas, and G. Wilke, Angew. Chem. Internat. Ed. Engl. 12, 565 (1973)Google Scholar
  223. P. W. Jolly and G. Wilke, The Organic Chemistry of Nickel, Vol. I, Academic Press, New York (1975).Google Scholar
  224. 141.
    H. Huber, D. Mcintosh, and G. A. Ozin, J. Organomet. Chem. 112, C50 (1976).Google Scholar
  225. 142.
    D. Mcintosh, and G. A. Ozin, J. Organomet. Chem. 121, 127 (1976).Google Scholar
  226. 143.
    N. Rösch and R. Hoffmann, Inorg. Chem. 13, 2656 (1974)Google Scholar
  227. J. R. Blackboro, R. Grubbs, A. Miyashita, and A. Scrivanti, J. Organomet. Chem. 120, C49 (1976).Google Scholar
  228. 144.
    M. J. D’Aniello, Jr., and E. K. Barefield, J. Organomet. Chem. 76, C50 (1974).Google Scholar
  229. 145. (a)
    E. M. Van Dam, W. N. Brent, M. P. Silvon, and P. S. Skell, J. Am. Chem. Soc. 97, 465 (1975)Google Scholar
  230. (b).
    T. S. Tan, J. L. Fletcher, and M. J. McGlinchey, J. Chem. Soc. Chem. Commun., 771 (1975)Google Scholar
  231. 146.
    P. L. Timms, private communications.Google Scholar
  232. 147.
    W. J. Kennelly, unpublished results from this laboratory.Google Scholar
  233. 148.
    B. Bogdanovic, M. Kroner, and G. Wilke, Ann. Chem. 699, 1 (1966)Google Scholar
  234. G. Wilke, Angew. Chem. Internat. Ed. Engl. 2, 105 (1963).Google Scholar
  235. 149.
    M. Green, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, J. Chem. Soc. Chem. Commun., 449 (1975).Google Scholar
  236. 150.
    P. S. Skell, E. M. Van Dam, and M. P. Silvon, J. Am. Chem. Soc. 96, 626 (1974).Google Scholar
  237. 151.
    M. Yevitz and P. S. Skell, unpublished results.Google Scholar
  238. 152.
    D. L. Williams-Smith, L. R. Wolf, and P. S. Skell, J. Am. Chem. Soc. 94, 4042 (1972).Google Scholar
  239. 153.
    E. Koerner von Gustorf, O. Jaenicke, and O. E. Polansky, Angew. Chem. 84, 547 (1972)Google Scholar
  240. E. Koerner von Gustorf, O. Jaenicke, and O. E. Polansky, Angew. Chem. Internat. Ed. Engl. 11, 532 (1972)Google Scholar
  241. J. R. Blackborow, R. H. Grubbs, A. Miyashita, A. Scrivanti, and E. A. Koerner von Gustorf, J. Organomet. Chem. 122, C6 (1977).Google Scholar
  242. 154.
    H. F. Efner, R. R. Smardzewski, D. E. Tevault, and W. B. Fox, private communications.Google Scholar
  243. 155.
    M. Brezinski, W. Kennelly, and T. Groshens, unpublished results from this laboratory.Google Scholar
  244. 156.
    K. J. Klabunde, T. Groshens, M. Brezinski, and W. Kennelly, J. Am. Chem. Soc. 100, 4437 (1978).Google Scholar
  245. 157.
    T. Groshens, unpublished work from this laboratory.Google Scholar
  246. 158.
    E. O. Fischer and W. Hafner, Z. Naturforsch. B 10, 665 (1955).Google Scholar
  247. 159.
    M. P. Silvon, E. M. Van Dam, and P. S. Skell, J. Am. Chem. Soc. 96, 1945 (1974).Google Scholar
  248. 160.
    K. J. Klabunde and H. F. Efner, Inorg. Chem. 14, 789 (1975).Google Scholar
  249. 161.
    P. L. Timms, J. Chem. Ed. 49, 782 (1972).Google Scholar
  250. 162.
    R. Middleton, J. R. Hull, S. R. Simpson, C. H. Tomlinson, and P. L. Timms, J. Chem. Soc. Dalton, 120 (1973).Google Scholar
  251. 163.
    M. J. McGlinchey and T. S. Tan, Can. J. Chem. 52, 2439 (1974).Google Scholar
  252. 164.
    M. J. McGlinchey and T. S. Tan, J. Am. Chem. Soc. 98, 2271 (1976).Google Scholar
  253. 165.
    V. Graves and J. J. Lagowski, Inorg. Chem. 15, 577 (1976).Google Scholar
  254. 166.
    A. N. Nesmeyanov, N. N. Zaitseva, G. A. Dormrachev, V. D. Zinovev, L. P. Yureva, and I. I. Tverdokhlebova, J. Organomet. Chem. 121, C52 (1977).Google Scholar
  255. 167.
    P. S. Skell, private communications.Google Scholar
  256. 168.
    H. F. Efner, unpublished results, from this laboratory.Google Scholar
  257. 169.
    G. Essenmacher (with P. Treichel), Ph.D. Thesis, University of Wisconsin, Madison, Wisconsin (1976); collaborative work with H. Efner and K. J. Klabunde.Google Scholar
  258. 170.
    L. Radonovich, C. Zuerner, H. F. Efner, and K. J. Klabunde, Inorg. Chem. 15, 2976 (1976).Google Scholar
  259. 171.
    L. Radonovich and C. Zuerner, unpublished work.Google Scholar
  260. 172.
    J. Boyd, J. Lavoie, and D. M. Gruen, J. Chem. Phys. 60, 4088 (1974).Google Scholar
  261. 173.
    L. H. Simons, P. E. Riley, R. E. Davis, and J. J. Lagowski, J. Am. Chem. Soc. 98, 1044 (1976).Google Scholar
  262. 174.
    P. E. Riley and R. E. Davis, Inorg. Chem. 15, 2735 (1976).Google Scholar
  263. 175.
    P. L. Timms, J. Chem. Soc. A, 2526 (1970).Google Scholar
  264. 176.
    D. Staplin and R. W. Parry, Symposium on “Atomic Species as Synthetic Reagents,” 170th National ACS Meeting, Chicago, Illinois, August 1975, paper INOR 117.Google Scholar
  265. 177.
    J. J. Havel, Ph.D. Thesis, The Pennsylvania State University, University Park, Pennsylvania (1972).Google Scholar
  266. 178.
    R. Cable, M. Green, R. E. Mackenzie, P. L. Timms, and T. W. Turney,/. Chem. Soc. Chem. Commun., 270 (1976).Google Scholar
  267. 179.
    D. Gladkowski and F. R. Scholar, 171st (Centennial) National ACS Meeting, New York, April 1976, paper INOR 133.Google Scholar
  268. 180.
    R. N. Perutz and J. J. Turner, J. Am. Chem. Soc. 97, 4791, 4800 (1975).Google Scholar
  269. 181.
    M. Poliakoff and J. J. Turner, J. Chem. Soc. Dalton, 1351 (1973)Google Scholar
  270. M. Poliakoff and J. J. Turner, J. Chem. Soc. Dalton, 2276 (1974)Google Scholar
  271. 182.
    O. Crichton, M. Poliakoff, A. J. Rest, and J. J. Turner, J. Chem. Soc. Dalton, 1321 (1973).Google Scholar
  272. 183.
    L. Hanlan, H. Huber, E. P. Kundig, B. McGarvey, and G. A. Ozin, J. Am. Chem. Soc. 97, 7054 (1975).Google Scholar
  273. 184.
    R. L. DeKock, Inorg. Chem. 10, 1205 (1971).Google Scholar
  274. 185.
    M. Poliakoff, J. Chem. Soc. Dalton, 210 (1974).Google Scholar
  275. 186.
    H. Huber, E. P. Kundig, M. Moskovits, and G. A. Ozin, J. Am. Chem. Soc. 97, 2097 (1975).Google Scholar
  276. 187.
    M. A. Graham, M. Poliakoff, and J. J. Turner, J. Chem. Soc. A, 2939 (1971).Google Scholar
  277. 188.
    E. P. Kündig and G. A. Ozin, J. Am. Chem. Soc, 96, 3820 (1974).Google Scholar
  278. 189.
    H. Huber, E. P. Kundig, G. A. Ozin, and A. J. Poë, J. Am. Chem. Soc. 97, 308 (1975).Google Scholar
  279. 190.
    L. Hanlan, H. Huber, and G. A. Ozin, Inorg. Chem. 15, 2592 (1976)Google Scholar
  280. T. A. Ford, H. Huber, W. Klotzbiicher, E. P. Kündig, M. Moskovits, and G. A. Ozin, Inorg. Chem. 15, 1666 (1976).Google Scholar
  281. 191.
    H. Huber, M. Moskovits, and G. A. Ozin, unpublished results.Google Scholar
  282. 192.
    M. A. Graham, M. Poliakoff, and J. J. Turner, J. Chem. Soc. A, 2939 (1971).Google Scholar
  283. 193.
    E. P. Kundig and G. A. Ozin, J. Am. Chem. Soc. 96, 5585 (1974).Google Scholar
  284. 194.
    E. P. Kundig, M. Moskovits, and G. A. Ozin, Can. J. Chem. 50, 3587 (1972).Google Scholar
  285. 195.
    J. H. Darling and J. S. Ogden, J. Chem. Soc. Dalton, 1079 (1973)Google Scholar
  286. J. H. Darling and J. S. Ogden, Inorg. Chem. 11, 666 (1972).Google Scholar
  287. 196.
    E. P. Kündig, D. Mcintosh, M. Moskovits, and G. A. Ozin, J. Am. Chem. Soc. 95, 7234 (1973).Google Scholar
  288. 197.
    D. Mcintosh and G. A. Ozin, J. Am. Chem. Soc., 98, 3167 (1976).Google Scholar
  289. 198.
    J. H. Darling, M. B. Garton-Sprenger, and J. S. Ogden, J. Chem. Soc. Faraday Trans. 2, Symp., 75 (1973).Google Scholar
  290. 199.
    J. S. Ogden, Chem. Commun., 978 (1971).Google Scholar
  291. 200.
    J. L. Slater, R. K. Sheline, K. C. Lin and W. Weltner, J. Chem. Phys. 55, 5129Google Scholar
  292. J. L. Slater, T. C. DeVore, and V. Calder, Inorg. Chem, 13, 1808 (1974)Google Scholar
  293. J. L. Slater, T. C. DeVore, and V. Calder, Inorg. Chem, 12, 1918 (1973).Google Scholar
  294. 201.
    E. P. Kündig, M. Moskovits, and G. A. Ozin, Can. J. Chem. 51, 2737 (1973).Google Scholar
  295. 202.
    M. Poliakoff and J. J. Turner, J. Chem. Soc. A, 2403 (1971).Google Scholar
  296. 203.
    L. Hanlan and G. A. Ozin, J. Am. Chem. Soc. 96, 6324 (1974).Google Scholar
  297. 204.
    L. Brewer and C. Chang, J. Chem. Phys. 56, 1728 (1972).Google Scholar
  298. 205.
    J. M. Brom, W. D. Hewett, and W. Weltner, J. Chem. Phys. 62, 3122 (1975).Google Scholar
  299. 206.
    D. W. Green and D. M. Gruen, J. Chem. Phys. 60, 1797 (1974)Google Scholar
  300. D. W. Green and D. M. Gruen, J. Chem. Phys. 57, 4462 (1972).Google Scholar
  301. 207.
    R. P. Eischens, S. A. Francis, and W. A. Pliskin, J. Phys. Chem. 60, 194 (1956).Google Scholar
  302. 208.
    G. Blyholder and M. C. Allen, J. Am. Chem. Soc. 91, 3158 (1969).Google Scholar
  303. 209.
    A. J. Hinchcliffe, D. D. Oswald, and J. S. Ogden, J. Chem. Soc. Chem. Commun., 338 (1972)Google Scholar
  304. 210.
    A. J. Hinchcliffe and D. D. Oswald, unpublished results.Google Scholar
  305. 211.
    A. Bos, Chem. Commun., 26 (1972).Google Scholar
  306. 212.
    H. Huber, E. P. Kundig, M. Moskovits, and G. A. Ozin, J. Am. Chem. Soc. 95, 332 (1973).Google Scholar
  307. 213.
    W. Klotzbücher and G. A. Ozin, J. Am. Chem. Soc. 97, 2672 (1975)Google Scholar
  308. H. Huber, E. P. Kündig, M. Moskovits, and G. A. Ozin, J. Am. Chem. Soc. 95, 332 (1973).Google Scholar
  309. 214.
    G. A. Ozin and A. Vander Voet, Can. J. Chem. 51, 637 (1973).Google Scholar
  310. 215.
    E. P. Kündig, M. Moskovits, and G. A. Ozin, Can. J. Chem. 51, 2710 (1973).Google Scholar
  311. 216.
    D. W. Green, J. Thomas, and D. M. Gruen, J. Chem. Phys. 58, 5453 (1973).Google Scholar
  312. 217.
    A. Bos and J. S. Ogden, J. Phys. Chem. 11, 1513 (1973).Google Scholar
  313. 218.
    A. Bos, J. S. Ogden, and L. Orgee, J. Phys. Chem. 78, 1763 (1974).Google Scholar
  314. 219.
    H. Huber and G. A. Ozin, Can. J. Chem. 50, 3746 (1972)Google Scholar
  315. H. Huber, W. Klotzbücher, G. A. Ozin, and A. Vander Voet, Can. J. Chem. 51, 2722 (1973)Google Scholar
  316. D. Mcintosh and G. A. Ozin, Inorg. Chem. 15, 2869 (1976).Google Scholar
  317. 220.
    Z. Zsigmandy and P. A. Thiessen, Das Kolloide Gold, Akademische Verlagsgesellschaft, Leipzig (1925)Google Scholar
  318. N. Uyeda, M. Nishiro, and E. Suito, J. Colloid Interface Sci. 43, 264 (1973)Google Scholar
  319. 221.
    M. Faraday, Philos. Trans. R. Soc. London 147, 145 (1875).Google Scholar
  320. 222.
    K. J. Klabunde, H. F. Efner, L. Satek, and W. Donley, J. Organomet. Chem. 71, 309 (1974).Google Scholar
  321. 223.
    J. Venables and G. L. Price in J. W. Matthews, Epitaxy, Academic Press, New York, Chapter 4Google Scholar
  322. R. Niedermayer, in Advances in Epitaxy and Endotaxy, H. G. Schneider and V. Ruth, Eds., Deutscher Verlag fiir Grundstoffindustrie, Leipzig, (1974)Google Scholar
  323. V. Halpern, J. Appl. Phys. 40, 4627 (1969)Google Scholar
  324. K. J. Routledge and H. J. Stowell, Thin Solid Films 6, 407 (1970).Google Scholar
  325. 224. (a)
    K. J. Klabunde, M. Brezinski, W. Kennelly, T. Groshens, unpublished resultsGoogle Scholar
  326. (b).
    W. Worthy, Chem. Eng. News, 23 (January 24, 1977).Google Scholar
  327. 225.
    T. O. Murdock and K. J. Klabunde, J. Org. Chem. 41, 1076 (1976).Google Scholar
  328. 226.
    M. Moskovits and J. Hulse, Surf Sci. 57, 125 (1976).Google Scholar
  329. 227.
    M. Brezinski, unpublished work from this laboratory.Google Scholar
  330. 228.
    J. L. Davidson, M. Green, F. G. A. Stone, and A. J. Welch, J. Am. Chem. Soc. 97 7490 (1975)Google Scholar
  331. R. B. King, M. I. Bruce, J. R. Phillips, and F. G. A. Stone, Inorg. Chem. 5, 684 (1966).Google Scholar
  332. 229.
    K. J. Klabunde, T. Groshens, M. Brezinski, and W. Kennelly, J. Am. Chem. Soc. 100, 4437 (1978).Google Scholar
  333. 230.
    S. Davis and K. J. Klabunde, J. Am. Chem. Soc., 100, 5973 (1978)Google Scholar
  334. K. J. Klabunde, S. Davis, and C. White, unpublished.Google Scholar
  335. 231.
    K. J. Klabunde and T. O. Murdock, unpublished results.Google Scholar
  336. 232.
    R. D. Rieke and S. E. Bales, J. Am. Chem. Soc. 96, 1775 (1974)Google Scholar
  337. R. D. Rieke and P. Hudnall, J. Am. Chem. Soc. 94, 7178 (1972)Google Scholar
  338. R. D. Rieke and P. Hudnall, J. Chem. Soc. Chem. Commun., 269 (1973)Google Scholar
  339. 233.
    C. King, K. Irgolic, and K. J. Klabunde, unpublished work.Google Scholar
  340. 234.
    R. D. Rieke, S. J. Uhm, and P. M. Hudnall, J. Chem. Soc. Chem. Commun., 269 (1973).Google Scholar
  341. 235.
    L. Chung Chao and R. D. Rieke, Syn. Inorg. Metal Org. Chem. 4, 373 (1974)Google Scholar
  342. L. Chung Chao and R. D. Rieke, J. Organomet. Chem. 67, C64 (1974).Google Scholar
  343. 236.
    R. D. Rieke and L. Chung Chao, Syn. React. Inorg. Metal Org. Chem. 4, 101 (1974).Google Scholar
  344. 237.
    R. D. Rieke, M. Ofele, and E. O. Fischer, J. Organomet. Chem. 76, C19 (1974).Google Scholar
  345. 238.
    R. D. Rieke, W. J. Wolf, N. Kujundzic, and A. Kavaliunas, J. Am. Chem. Soc. 99, 4159 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Kenneth J. Klabunde
    • 1
  1. 1.Department of ChemistryThe University of North DakotaGrand ForksUSA

Personalised recommendations