Advertisement

The Preparation and Reactions of Atomic Carbon

  • Philip B. Shevlin

Abstract

Atomic carbon is one of the most fascinating intermediates encountered in chemistry. There are very few intermediates that possess more energy than a carbon atom. The 3P ground state has a heat of formation of 171 kcal/mol, while two low-lying metastable singlets, C1D) and C(1S), have ΔH f of 201 and 233 kcal/mol, respectively.1 As a consequence of this high energy, carbon atoms are difficult to generate and the design of systems for their production has challenged the ingenuity of many chemists. The rewards for investigators in this area are great, however; the high chemical potential of atomic carbon causes it to undergo a wide variety of interesting and unusual reactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Herzberg, Atomic Spectra and Atomic Structure, Dover Publications, New York (1944), p. 142.Google Scholar
  2. 2.
    A. P. Wolf, Adv. Phys. Org. Chem. 2, 201 (1964).Google Scholar
  3. 3.
    R. Wolfgang, Prog. React. Kinet. 3, 97 (1965).Google Scholar
  4. 4.
    R. F. Peterson and R. Wolfgang, Adv. High Temp. Chem. 4, 43 (1971).Google Scholar
  5. 5.
    C. MacKay, in Carbenes, Vol. fl (R. A. Moss and M. Jones, Jr., eds.), Wiley-Inter- science, New York (1975), pp. 1–42.Google Scholar
  6. 6.
    P. S. Skell, J. S. Havel, and M. J. McGlinchey, Acc. Chem. Res. 6, 97 (1973).Google Scholar
  7. 7.
    A. P. Wolf and R. C. Anderson, J. Am. Chem. Soc. 77, 1608 (1955).Google Scholar
  8. 8.
    B. Suryanarayana and A. P. Wolf, J. Phys. Chem. 62, 1369 (1958).Google Scholar
  9. 9.
    J. Dubrin, C. MacKay, M. L. Pandow, and R. Wolfgang, J. Inorg. Nucl. Chem. 25, 2113 (1964).Google Scholar
  10. 10.
    H. J. Ache and A. P. Wolf, Radiochim. Acta 6, 33 (1966).Google Scholar
  11. 11.
    G. Stocklin, H. Stangl, D. R. Christman, J. B. Cumming, and A. P. Wolf, Phys. Chem. 67, 1735 (1963).Google Scholar
  12. 12.
    A. P. Wolf and C. S. Redvanly, Int. J. Appl. Radiat. Isotopes 28, 29 (1977).Google Scholar
  13. 13.
    R. F. Harris, Ph.D. Thesis, The Pennsylvania State University, University Park, Pennsylvania (1968) (cited in reference 6).Google Scholar
  14. 14.
    P. S. Skell and R. F. Harris, J. Am. Chem. Soc. 88, 5933 (1966).Google Scholar
  15. 15.
    P. S. Skell and P. W. Owen, J. Am. Chem. Soc. 94, 1578 (1971).Google Scholar
  16. 16.
    J. F. Villaume and P. S. Skell, J. Am. Chem. Soc. 94, 3455 (1972).Google Scholar
  17. 17.
    J. Drowart, R. P. Burno, G. De Mario, and M. G. Inghram, J. Chem. Phys. 31, 1131 (1959).Google Scholar
  18. 18.
    P. S. Skell, J. Havel, J. Plonka, J. Villaume, and K. Klabunde, unpublished results (cited in reference 15).Google Scholar
  19. 19.
    W. A. Chupka and M. G. Inghram, J. Chem. Phys. 21, 1313 (1953).Google Scholar
  20. 20.
    J. F. Verdieck and A. W. H. Mau, Chem. Commun., 226 (1969).Google Scholar
  21. 21.
    D. Blaxell, R. Peterson, D. J. Malcolme Lowes, and R. Wolfgang, Chem. Commun., 110 (1972).Google Scholar
  22. 22.
    R. T. Meyer, A. W. Lynch, and J. M. Freese, J. Phys. Chem. 77, 1083 (1973).Google Scholar
  23. 23.
    D. G. Williamson and K. D. Bayes, J. Am. Chem. Soc. 90, 1957 (1967).Google Scholar
  24. 24.
    B. D. Kybett, G. K. Johnson, C. K. Barker, and J. L. Margrave, J. Phys. Chem. 69, 3603 (1965).Google Scholar
  25. 25.
    W. Braun, A. W. Bass, D. D. Davis, and J. D. Simmons, Proc. R. Soc. London Ser. A 312, 417 (1969).Google Scholar
  26. 26.
    D. Husain and L. J. Kirsch, Trans. Faraday Soc. 67, 2025 (1971).Google Scholar
  27. 27.
    D. Husain and L. J. Kirsch, Chem. Phys. Lett. 8, 543 (1971).Google Scholar
  28. 28.
    D. Husain and L. J. Kirsch, Trans. Faraday Soc. 67, 2886 (1971).Google Scholar
  29. 29.
    D. Husain and L. J. Kirsch, Trans. Faraday Soc. 67, 3166 (1971).Google Scholar
  30. 30.
    D. Husain and L. J. Kirsch, Chem. Phys. Lett. 9, 412 (1971).Google Scholar
  31. 31.
    D. Husain and L. J. Kirsch, J. Photochem. 2, 297 (1973–1974).Google Scholar
  32. 32.
    D. Husain and A. N. Young, J. Chem. Soc. Faraday Trans. II 71, 525 (1975).Google Scholar
  33. 33.
    L. J. Stief and V. J. DeCarlo, J. Am. Chem. Soc. 91, 839 (1969).Google Scholar
  34. 34.
    E. Tschukow-Roux and S. Kodama, J. Chem. Phys. 50, 5297 (1969).Google Scholar
  35. 35.
    E. Tschukow-Roux, Y. Inel, S. Kodama, and A. W. Kirk, J. Chem. Phys. 56, 3238 (1972).Google Scholar
  36. 36.
    R. E. Rebbert and P. Ausloos, J. Photochem. 1, 171 (1972–1973).Google Scholar
  37. 37.
    H. W. Buschmann and W. Groth, Z. Naturforsch. Teil A 22, 954 (1967).Google Scholar
  38. 38.
    W. Groth, W. Pessara, and H. J. Rommel, Z. Phys. Chem. 32, 192 (1962).Google Scholar
  39. 39.
    D. E. Milligan and M. E. Jacox, J. Chem. Phys. 44, 2850 (1966).Google Scholar
  40. 40.
    N. G. Moll and W. E. Thompson, J. Chem. Phys. 44, 2684 (1966).Google Scholar
  41. 41.
    W. Weltner, Jr., P. N. Walsh, and C. L. Angell, J. Chem. Phys. 40, 1299 (1964).Google Scholar
  42. 42.
    P. B. Shevlin and A. P. Wolf, Tetrahedron Lett., 3987 (1970).Google Scholar
  43. 43.
    R. L. Williams and A. F. Voigt, J. Phys. Chem. 73, 2538 (1969).Google Scholar
  44. 44.
    P. B. Shevlin, J. Am. Chem. Soc. 94, 1379 (1972).Google Scholar
  45. 45.
    D. Kley, N. Washida, K. H. Becker, and W. Groth, Chem. Phys. Lett. 15, 45 (1972).Google Scholar
  46. 46.
    D. Kley, N. Washido, K. H. Becker, and W. Groth, Z. Phys. Chem. 82, 109 (1972).Google Scholar
  47. 47.
    F. F. Martinotti, M. J. Welch, and A. P. Wolf, Chem. Commun., 115 (1968).Google Scholar
  48. 48.
    E. Y. Y. Lam, P. Gaspar, and A. P. Wolf, J. Phys. Chem. 75, 445 (1971).Google Scholar
  49. 49.
    C. W. Spangler, S. K. Lott, and M. J. Joncich, Chem. Commun., 842 (1966).Google Scholar
  50. 50.
    A. R. Fairbairn, J. Quant. Spectrosc. Radiat. Transfer 9, 943 (1969).Google Scholar
  51. 51.
    G. M. Meadburn and D. Perner, Nature (London) 212, 1042 (1966).Google Scholar
  52. 52.
    R. M. Lemmon, Acc. Chem. Res. 6, 65 (1973).Google Scholar
  53. 53.
    H. M. Pohlit, Lin Tz-Hong, W. Erwin, and R. M. Lemmon, J. Am. Chem. Soc. 91, 5421 (1969).Google Scholar
  54. 54.
    H. M. Pohlit, Tz-Hong Lin, and R. M. Lemmon, J. Am. Chem. Soc. 91, 5425 (1969).Google Scholar
  55. 55.
    R. J. Donovan and D. Husain, Chem. Rev. 70, 489 (1970).Google Scholar
  56. 56.
    R. J. Blint and M. D. Newton, Chem. Phys. Lett. 32, 178 (1975).Google Scholar
  57. 57.
    C. MacKay, J. Nicholas, and R. Wolfgang, J. Am. Chem. Soc. 89, 5758 (1967).Google Scholar
  58. 58.
    T. L. Rose, J. Phys. Chem. 76, 1389 (1972).Google Scholar
  59. 59.
    K. K. Taylor, H. J. Ache, and A. P. Wolf, J. Am. Chem. Soc. 97, 5970 (1975).Google Scholar
  60. 60.
    G. L. Jewett and A. F. Voigt, J. Phys. Chem. 75, 3201 (1971).Google Scholar
  61. 61.
    T. Rose and C. MacKay, J. Phys. Chem. 77, 2598 (1973).Google Scholar
  62. 62.
    J. M. Figuera, J. M. Perez, and A. P. Wolf, Chem. Soc. Faraday Trans. I 71, 1905 (1975).Google Scholar
  63. 63.
    T. Migita, C. A. Redvanly, and A. P. Wolf, 155th National Meeting of the American Chemical Society, San Francisco, California, March 1968, Abstract No. P226.Google Scholar
  64. 64.
    P. S. Skell and R. R. Engel, J. Am. Chem. Soc. 88, 4883 (1966).Google Scholar
  65. 65.
    G. Stocklin and A. P. Wolf, J. Am. Chem. Soc. 85, 229 (1963).Google Scholar
  66. 66.
    P. B. Shevlin and S. Kammula, Am. Chem. Soc. 99, 2627 (1977).Google Scholar
  67. 67.
    R. C. Dobson, D. M. Hayes, and R. Hoffmann, Am. Chem. Soc. 93, 6188 (1971)Google Scholar
  68. 68.
    N. Bodor, M. J. S. Dewar, and J. S. Wasson, Am. Chem. Soc. 94, 9095 (1972).Google Scholar
  69. 69.
    A. P. Wolf and G. Stocklin, 164th National Meeting of the American Chemical Society, Denver, Colorado, January 1964, Abstract No. 060.Google Scholar
  70. 70.
    J. Dubrin, C. MacKay, and R. Wolfgang, J. Am. Chem. Soc. 86, 959 (1964).Google Scholar
  71. 71.
    W. Braun, J. R. McNesby, and A. M. Bass, Chem. Phys. 46, 2071 (1967).Google Scholar
  72. 72.
    M. J. Welch and A. P. Wolf, Am. Chem. Soc. 91, 6584 (1969).Google Scholar
  73. 73.
    R. M. Lambrecht, N. Furukawa, and A. P. Wolf, J. Phys. Chem. 74, 4605 (1970).Google Scholar
  74. 74.
    K. K. Taylor, H. J. Ache, and A. P. Wolf, J. Am. Chem. Soc. 98, 7176 (1976).Google Scholar
  75. 75.
    P. B. Shevlin and A. P. Wolf, J. Am. Chem. Soc. 88, 4735 (1966).Google Scholar
  76. 76.
    C. MacKay and R. Wolfgang, J. Am. Chem. Soc. 83, 2399 (1961).Google Scholar
  77. 77.
    S. Kammula and P. B. Shevlin, J. Am. Chem. Soc. 95, 4441 (1973).Google Scholar
  78. 78.
    A. Guarino and A. P. Wolf, Tetrahedron Lett. 655 (1969).Google Scholar
  79. 79.
    R. R. Gallucci and M. Jones, Jr., J. Am. Chem. Soc. 98, 7704 (1976).Google Scholar
  80. 80.
    P. S. Skell, J. H. Plonka, and L. S. Wood, Chem. Commun., 710 (1970).Google Scholar
  81. 81.
    W. von E. Doering and P. M. La Flamme, Tetrahedron 2, 75 (1958).Google Scholar
  82. 82.
    L. Skattebøl, Tetrahedron Lett. 167 (1961).Google Scholar
  83. 83.
    C. MacKay, P. Polak, H. E. Rosenberg, and R. Wolfgang, J. Am. Chem. Soc. 84, 308 (1962).Google Scholar
  84. 84.
    M. Marshall, C. MacKay, and R. Wolfgang, Am. Chem. Soc. 86, 4741 (1964).Google Scholar
  85. 85.
    P. S. Skell, J. E. Villaume, J. H. Plonka, and F. A. Fagone, Am. Chem. Soc. 93, 2699 (1971).Google Scholar
  86. 86.
    M. J. McGlinchey, T. Reynoldson, and F. G. A. Stone, Chem. Commun., 1264 (1970).Google Scholar
  87. 87.
    M. J. S. Dewar, E. Haselbach, and M. Shanshal, J. Am. Chem. Soc. 92, 3505 (1970).Google Scholar
  88. 88.
    C. Wentrup, Fortschr. Chem. Forsch. 62, 173 (1976)Google Scholar
  89. W. M. Jones and U. H. Brinker, in Pericyclic Reactions, Vol. I (A. P. Marchand and R. E. Lehr, eds.), Academic Press, New York (1977), pp. 110–191.Google Scholar
  90. 89.
    J. Lintermans, W. Erwin, and R. M. Lemmon, J. Phys. Chem. 76, 2521 (1972).Google Scholar
  91. 90.
    T. Rose, C. MacKay, and R. Wolfgang, J. Am. Chem. Soc. 89, 1529 (1967).Google Scholar
  92. 91.
    C. D. Gutsche, G. L. Bachman, and R. S. Coffey, Tetrahedron 18, 617 (1962).Google Scholar
  93. 92.
    W. D. Crow and M. N. Paddon-Row, Aust. J. Chem. 26, 1705 (1973).Google Scholar
  94. 93.
    H. Hedaya and M. E. Kent J. Am. Chem. Soc. 93, 3283 (1971).Google Scholar
  95. 94.
    R. Visser, C. R. Redvanly, F. L. J. Sixma, and A. P. Wolf, Rec. Trav. Chim. Pays-Bas 80, 533 (1961).Google Scholar
  96. 95.
    J. H. Plonka and P. S. Skell, Chem. Commun., 1108 (1970).Google Scholar
  97. 96.
    J. K. Agopian, D. W. Brown, and M. Jones, Jr., Tetrahedron Lett., 2931 (1976).Google Scholar
  98. 97.
    P. S. Skell and R. F. Harris, J. Am. Chem. Soc. 91, 4440 (1969).Google Scholar
  99. 98.
    J. A. Kerr, B. V. O’Grady, and A. F. Trotman-Dickenson, Chem. Soc. A, 897 (1967).Google Scholar
  100. 99.
    G. F. Palino and A. F. Voigt, J. Am. Chem. Soc. 91, 242 (1969).Google Scholar
  101. 100.
    R. L. Williams and A. F. Voigt, J. Phys. Chem. 75, 2253 (1971).Google Scholar
  102. 101.
    C. MacKay and R. Wolfgang, Radiochim. Acta 1, 42 (1962).Google Scholar
  103. 102.
    P. S. Skell, J. H. Plonka, and R. R. Engel, J. Am. Chem. Soc. 89, 1748 (1967).Google Scholar
  104. 103.
    R. H. Parker and P. B. Shevlin, Tetrahedron Lett., 2167 (1975).Google Scholar
  105. 104.
    J. M. Figuera, P. B. Shevlin, and S. D. Worley, J. Am. Chem. Soc. 98, 3820 (1976).Google Scholar
  106. 105.
    P. S. Skell, J. H. Plonka, and K. J. Klabunde, Chem. Commun., 1109 (1970).Google Scholar
  107. 106.
    P. S. Skell, K. J. Klabunde, J. H. Plonka, J. S. Roberts, and D. L. Williams-Smith, J. Am. Chem. Soc. 95, 1547 (1973).Google Scholar
  108. 107.
    S. W. Benson, Chem. Phys. 34, 521 (1971).Google Scholar
  109. 108.
    T. R. Forbus, P. A. Birdsong, and P. B. Shevlin, J. Am. Chem. Soc. 100, 6425 (1978).Google Scholar
  110. 109.
    S. Dyer and D. B. Shevlin, J. Am. Chem. Soc. 101, 1303 (1979).Google Scholar
  111. 110.
    R. V. Hoffman and H. Schechter, J. Am. Chem. Soc. 93, 5940 (1971).Google Scholar
  112. 111.
    A. F. Voigt, J. F. Plaino, and R. L. Williams, J. Phys. Chem. 75, 2248 (1971).Google Scholar
  113. 112.
    P. S. Skell and J. H. Plonka, Am. Chem. Soc. 92, 836 (1970).Google Scholar
  114. 113.
    P. S. Skell and J. H. Plonka, J. Am. Chem. Soc. 92, 2160 (1970).Google Scholar
  115. 114.
    J. H. Plonka and P. S. Skell, Tetrahedron Lett., 4557 (1970).Google Scholar
  116. 115.
    P. S. Skell and J. H. Plonka, Tetrahedron 28, 3571 (1972).Google Scholar
  117. 116.
    L. Freidman and H. Schecter, J. Am. Chem. Soc. 82, 1002 (1960).Google Scholar
  118. 117.
    S. F. Dyer, S. Kammula, and P. B. Shevlin, J. Am. Chem. Soc. 99, 8104 (1977).Google Scholar
  119. 118.
    P. S. Skell and R. F. Harris, J. Am. Chem. Soc. 87, 5807 (1965).Google Scholar
  120. 119.
    L. Eng., Ph.D. Thesis, The Pennsylvania State University, University Park, Pennsylvania (1970) (cited in reference 6).Google Scholar
  121. 120.
    H. J. Ache and A. P. Wolf, J. Am. Chem. Soc. 88, 888 (1966).Google Scholar
  122. 121.
    D. Blaxell, C. MacKay, and R. Wolfgang, J. Am. Chem. Soc. 92, 50 (1969).Google Scholar
  123. 122.
    R. D. Finn, H. J. Ache, and A. P. Wolf, J. Phys. Chem. 74, 3194 (1970).Google Scholar
  124. 123.
    M. E. Jacox, D. E. Milligan, N. G. Moll, and W. E. Thompson, J. Chem. Phys. 43, 3734 (1965).Google Scholar
  125. 124.
    S. Kammula and P. B. Shevlin, J. Am. Chem. Soc. 95, 4441 (1973).Google Scholar
  126. 125.
    D. E. Milligan and M. E. Jacox, J. Chem. Phys. 41, 5157 (1967).Google Scholar
  127. 126.
    F. Cacace and A. P. Wolf, J. Am. Chem. Soc. 84, 3202 (1962).Google Scholar
  128. 127.
    D. E. Milligan and M. E. Jacox, J. Chem. Phys. 48, 2265 (1968).Google Scholar
  129. 128.
    M. E. Jacox and D. E. Milligan, J. Chem. Phys. 47, 703 (1967).Google Scholar
  130. 129.
    M. E. Jacox and D. E. Milligan, Chem. Phys. 50, 3252 (1969).Google Scholar
  131. 130.
    M. E. Jacox and D. E. Milligan, Chem. Phys. 47, 1626 (1967).Google Scholar
  132. 131.
    L. A. Shimp and R. J. Lagow, J. Am. Chem. Soc. 95, 1343 (1973).Google Scholar
  133. 132.
    J. E. Dobson, P. M. Tucker, R. Schaeffer, and F. G. A. Stone, J. Chem. Soc. A, 1882 (1969).Google Scholar
  134. 133.
    M. J. McGlinchey, J. D. Odom, T. Reynoldson, and F. G. A. Stone, J. Chem. Soc. A, 31 (1970).Google Scholar
  135. 134.
    S. R. Prince and R. Schaeffer, Chem. Commun., 451 (1968).Google Scholar
  136. 135.
    J. Binenboym and R. Schaeffer, Inorg. Chem. 9, 1578 (1970).Google Scholar
  137. 136.
    J. F. Lifton and M. J. Welch, Radiat. Res. 45, 35 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Philip B. Shevlin
    • 1
  1. 1.Department of ChemistryAuburn UniversityAuburnUSA

Personalised recommendations