Advertisement

Charm, Apres-Charm, and Beyond

  • J. Ellis
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 39)

Abstract

The purpose of these lectures is to review current phenomenology of the weak and electromagnetic interactions from a gauge theoretical prospective. Particular attention will be paid to the recent results presented by experimental lecturers at this school 1–3). Free use will be made of the quark-parton and gauge technology developed by other theoretical lecturers 4,5). It will not often enter explicitly, but where a choice is necessary we will assume that strong interactions are also described by a gauge theory, namely quantum chromodynamics (QCD)6).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    L.M. Lederman, Lectures presented at this School and talk presented at the 1977 International Symposium on Lepton and Photon Interactions at High Energies, Hamburg, 1977.Google Scholar
  2. 2).
    J. Steinberger, Lectures presented at this School and talks by P. Bloch, K. Kleinknect and K. Tittel, presented at the Hamburg Symposium, loc. cit.Google Scholar
  3. 3).
    B.H. Wiik, Lectures presented at this school. See also B.H. Wiik and G. Wolf, Electron-positron interactions, Lectures presented at the 1976 Les Houches Summer School, DESY preprint 77/01(1977) and many talks presented at the Hamburg Symposium, loc. cit.Google Scholar
  4. 4).
    M. Lévy, Lectures presented at this School. J. Weyers, Lectures presented at this School.Google Scholar
  5. 5).
    C.H. Llewellyn Smith, Lectures presented at this School. See also J. Ellis, Deep hadronic structure, Lectures presented at the 1976 Les Houches Summer School, CERN preprint (1977).Google Scholar
  6. 6).
    H.D. Politzer, Phys. Reports 14C, 129 (1974). W. Marciano and H. Pagels, Quantum chromodynamics — a review, Rockefeller preprint C00-2232B-130 (1977).ADSCrossRefGoogle Scholar
  7. 7).
    A. de Rujula, The current weak current, Lectures presented at the 1976 Les Houches Summer School, Harvard preprint HUTP-77/ A006 (1977). H. Fritzsch, The world of flavour and colour, Lectures presented at the 1977 Varenna Summer School, CERN preprint TH 2359 (1977).Google Scholar
  8. 8).
    Y. Hara, Phys. Rev. 134, B701 (1964) Z. Maki and Y.Ohnuki, Progr. Theor. Phys. 32, 144 (1964). D. Amati, H. Bacry, J. Nuyts and J. Prentki, Phys. Letters 11, 190 (1964) and Nuovo Cimento 34, 1732 (1964). B. J. Bjorken and S.L. Glashow, Phys. Letters 11, 255 (1964).ADSCrossRefGoogle Scholar
  9. 9).
    S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2, 1285 (1970).ADSGoogle Scholar
  10. 10).
    F. Hasert et la., Phys. Letters, 46B, 121, 138 (1973).ADSCrossRefGoogle Scholar
  11. 11).
    E.S. Abers and B.W. Lee, Phys. Reports 9C, 1 (1973). J. Iliopoulos, An Introduction to gauge theories, CERN 76–11 (1976).Google Scholar
  12. 12).
    M. Veltman, Lectures presented at the 17th Cracow School of Theoretical Physics, Zakopane, Poland, 1977.Google Scholar
  13. 13).
    G.’t Hooft, Nuclear Phys. B35, 167 (1971).ADSCrossRefGoogle Scholar
  14. 14).
    S.L. Glashow, Nuclear Phys. 22, 579 (1971).ADSCrossRefGoogle Scholar
  15. 15).
    S. Weinberg, Phys. Rev. Letters, 19, 1264 (1967). A. Salam, Proc. 8th Nobel Symposium, Stockholm 1968 (ed. N. Svartholm) ( Almqvist and Wiksells, Stockholm, 1968 ) p. 367.Google Scholar
  16. 16).
    E.A. Paschos, Phys. Rev. D 15, 1966 (1977). S.L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958 (1977)ADSCrossRefGoogle Scholar
  17. 17).
    M. Kobayashi and K. Maskawa, Progr. Theor. Phys. 49, 652 (1973). See also L. Maiani, Phys. Letters 62B, 183 (1976).ADSCrossRefGoogle Scholar
  18. 18).
    C.G. Callan, R.F. Dashen and D.J. Gross, Phys. Letters 63B, 334 (1976). R.D. Peccei and H.R. Quinn, Stanford University Preprint ITP- 572 (1977).ADSCrossRefGoogle Scholar
  19. 19).
    T.D. Lee, Phys. Reports 9C, 148 (1974). S. Weinberg, Phys. Rev. Letters 37, 657 (1976).ADSCrossRefGoogle Scholar
  20. 20).
    A.I. Vainshtein and I.B. Khriplovich, JETP Letters 18, 141 (1973). M.K. Gaillard and B.W. Lee, Phys. Rev. D 18, 897 (1974).Google Scholar
  21. 21).
    See, for example, M.K. Gaillard, B.W. Lee and R.E. Shrock, Phys. Rev. D 13, 2674 (1976).ADSGoogle Scholar
  22. 22).
    J.J. Aubert et al., Phys. Rev. Letters 33, 1404 (1974). J.E. Augustin et al., Phys. Rev. Letters 33, 1406 (1974).ADSCrossRefGoogle Scholar
  23. 23).
    G. Goldhaber et al., Phys. Rev. Letters 37 255 (1976). I. Peruzzi et al., Phys. Rev. Letters 37, 569 (1976).ADSCrossRefGoogle Scholar
  24. 24).
    E.G. Cazzoli et al., Phys. Rev. Letters 34, 1125 (1975). G. Blietschau et al., Phys. Letters 60B, 207 (1975). J. Von Krogh et al., Phys. Rev. Letters 36, 710 (1976).ADSCrossRefGoogle Scholar
  25. 25).
    J.E. Wiss et al., Phys. Rev. Letters 37, 1531 (1976).ADSCrossRefGoogle Scholar
  26. 26).
    W. Braunschweig et al., Phys. Letters 63B, 471 (1976). J. Burmester et al., Phys. Letters 64B, 369 (1976).ADSCrossRefGoogle Scholar
  27. 27).
    M.K. Gaillard, B.W. Lee and J.L. Rosner, Rev. Mod. Phys. 47, 277 (1975).ADSCrossRefGoogle Scholar
  28. 28).
    K. Wilson, Phys. Rev. 179, 1499 (1969). M.K. Gaillard and B.W. Lee, Phys. Rev. Letters 33, 108 (1974). G. Altarelli and L. Maiani, Phys. Letters 52B, 351 (1974).ADSCrossRefGoogle Scholar
  29. 29).
    J. Ellis, M.K. Gaillard and D.V. Nanopoulos, Nuclear Phys. B100, 313 (1975).ADSCrossRefGoogle Scholar
  30. 30).
    E.H.S. Burhop et al., Phys. Letters 65B, 299 (1976).ADSCrossRefGoogle Scholar
  31. 31).
    M. Holder et al., Phys. Letters 69B, 377 (1977). Dimuon events in neutrino collisions were discovered by A. Benvenuti et al., Phys. Rev. Letters 34, 419 (1975).ADSCrossRefGoogle Scholar
  32. 32).
    B.C. Barish et al., Caltech preprint CALT 68–606 (1976). D.C. Cundy, Talk presented at the Neutrino 1977 Conference, Elbrus, USSR, 1977.Google Scholar
  33. 33).
    C. Baltay et al., Phys. Rev. Letters 39, 62 (1977).ADSCrossRefGoogle Scholar
  34. 34).
    J. Burmester et al., Ref. 26. See also R. Brandelik et al., Phys. Letters 67B, 363 (1977). J. Burmester et al., Phys. Letters 67B 367 (1977).ADSCrossRefGoogle Scholar
  35. 35).
    M.L. Perl et al., Phys. Rev. Letters 35, 1489 (1975).ADSCrossRefGoogle Scholar
  36. 36).
    B.C. Barish et al., Phys. Rev. Letters 38, 577 (1977). A. Benvenuti et al., Phys. Rev. Letters 38, 1110 (1977).ADSCrossRefGoogle Scholar
  37. 37).
    S. Herb et al., Phys. Rev. Letters 39, 252 (1977).ADSCrossRefMathSciNetGoogle Scholar
  38. 38).
    C. Bouchiat, J. Iliopoulos and Ph. Pleyer, Phys. Letters 38B, 519 (1972). D.C. Gross and R. Jackiw, Phys. Rev. D 6, 477 (1972).ADSCrossRefGoogle Scholar
  39. 39).
    B. Aubert et al., Phys. Rev. Letters 33, 984 (1974). A. Benvenuti et al., Phys. Rev. Letters 36, 1478 (1976). A. Benvenuti et al., Phys. Rev. Letters 37, 189 (1976). B.C. Barish et al., Phys. Rev. Letters, 38 314 (1977).ADSCrossRefGoogle Scholar
  40. 40).
    M. Holder et al., Phys. Rev. Letters 39, 433 (1977).ADSCrossRefGoogle Scholar
  41. 41).
    See, for example, P. Ramond, Nuclear Phys. B110, 214 (1976). F. Gursey and P. Sikivie, Phys. Rev. Letters 36, 775 (1976).ADSCrossRefMathSciNetGoogle Scholar
  42. 42).
    P. Baird et al., Nature 264, 528 (1976). P. Sandars, Talk presented at the 1977 International Symposium on Lepton and Photon Interactions at High Energies, Hamburg, 1977.Google Scholar
  43. 43).
    See, for example, H. Fritzsch and P. Minkowski, Ann. Phys. (NY) 93, 193 (1974) and Nuclear Phys. B103, 61 (1976). Also G.G. Ross and T. Weiler, private communication.ADSCrossRefGoogle Scholar
  44. 44).
    R.N. Mohapatra and J.C. Pati, Phys. Rev. D 566, 2558 (1975). G. Senjavonic and R.N. Mohapatra, Phys. Rev. D 1502 (1975). A de Rujula, H. Georgi and S.L. Glashow, Harvard preprint HUTP- 77/A002 (1977).Google Scholar
  45. 45).
    See, for example, H. Fritzsch and P. Minkowski, Phys. Letters 63B, 99 (1976).ADSCrossRefGoogle Scholar
  46. 46).
    G. Segré and J. Weyers, Phys. Letters 65B, 243 (1976) and references therein.ADSCrossRefGoogle Scholar
  47. 47).
    J.D. Bjorken and K. Lane (unpublished).Google Scholar
  48. 48).
    T.C. Yang, DESY preprint 77 /39 (1977).Google Scholar
  49. 49).
    Y.-S. Tsai, Phys. Rev. D 4, 2821 (1971).ADSCrossRefGoogle Scholar
  50. 50).
    C.H. Llewellun Smith, Phys. Letters 46B, 233 (1973). J.S. Bell, Nuclear Phys. B60, 427 (1973). J.M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. Letters 30, 1268 (1973) and Phys. Rev. D 10, 1145 (1974).CrossRefGoogle Scholar
  51. 51).
    See, for example, H. Georgi and S.L. Glashow, Phys. Rev. Letters 28, 1494 (1972).ADSCrossRefGoogle Scholar
  52. 52).
    See for example, H. Fritzsch, M. Gell-Mann and P. Minkowski, Phys. Letters 59B, 256 (1976).ADSGoogle Scholar
  53. 53).
    C.H. Llewellyn Smith, Oxford preprint OUTP 76–33 (1976) is a nice review.Google Scholar
  54. 54).
    J. Prentki and B. Zumino, Nuclear Phys. B47, 99 (1972).ADSCrossRefGoogle Scholar
  55. 55).
    See, for example, J. Schechter and Y. Ueda, Phys. Rev. D 8, 484 (1973).ADSCrossRefGoogle Scholar
  56. 56).
    D. Horn and G.G. Ross, Phys. Letters 67B, 460 (1977). G. Altarelli, N. Cabibbo, L. Maiani and R. Petronzio, Phys. Letters 67B, 463 (1977).ADSCrossRefGoogle Scholar
  57. 57).
    For a sampler of models, see J.D. Bjorken and C.H. Llewellyn Smith, Phys. Rev. D 7, 887 (1973).ADSGoogle Scholar
  58. 58).
    H.B. Thacker and J.J. Sakurai, Phys. Letters 36B, 103 (1971); see also the calculations in Ref. 57.ADSCrossRefGoogle Scholar
  59. 59).
    A. Ali and T.C. Yang, Phys. Letters 65B, 275 (1977). A. Buras and J. Ellis, Nuclear Phys. B111, 431 (1976). G. Köpp, L.N. Sehgal and P.M. Zerwas, Nuclear Phys. B123, 61, 77 (1977).ADSCrossRefGoogle Scholar
  60. 60).
    F.A.Wilczek and A. Zee, Nuclear Phys. B106, 461 (1976).ADSGoogle Scholar
  61. 61).
    M. Cavalli-Sforza et al., Phys. Rev. Letters 36, 558 (1976). N.L. Perl et al., Phys. Letters 63B, 466 (1976). G.J. Feldman et al., Phys. Rev. Letters 38, 117 (1977). J. Burmester et al., Phys. Letters 68B, 297 (1977). J. Burmester et al., Phys. Letters 68B, 301 (1977). R. Brandelik et al., DESY preprint 77/36 (1977). A. Barbaro-Galtieri et al., Berkeley preprint LBL-458 (1977). N.L. Perl et al., preprint SLAC-PUB-1997/LBL-6731 (1977).ADSCrossRefGoogle Scholar
  62. 62).
    However, the events of B.C. Barish et al., Ref. 36, and of the CDHS collaboration, N. Holder et al., Observation of trimuon events produced in neutrino and antineutrino interactions, submitted to Phys. Letters B, do not cry out for a heavy lepton explanation, and are consistent with a more conventional hadronic source.Google Scholar
  63. 63).
    A. Benvenuti et al., Phys. Rev. Letters 38, 1183 (1977). V. Barger et al., Phys. Rev. Letters 38, 1190 (1977).ADSCrossRefGoogle Scholar
  64. 64).
    A. Benvenuti et al., Phys. Rev. Letters 35, 1199 (1975). M. Holder et al., Like-sign dimuon events produced in narrow band neutrino and antineutrino beams, submitted to Phys. Letters B.ADSCrossRefGoogle Scholar
  65. 65).
    See, for example, V. Barger, D.V. Nanopoulos and R.J.N. Phillips, Wisconsin preprint CGO-597 (1977).Google Scholar
  66. 66).
    B.W. Lee and S. Weinberg, Phys. Rev. Letters 30, 1237 (1977). P. Langacker and G. Segré, Phys. Rev. Letters 39, 259 (1977).ADSCrossRefGoogle Scholar
  67. 67).
    H. Harari, Proc. 1975 Internat. Symposium on Lepton and Photon Interactions at High Energies, Stanford 1975 (ed. W.T. Kirk) (SLAC, Stanford, 1975), p. 317.Google Scholar
  68. 68).
    S.L. Adler, Phys. Rev. 177, 2426 (1969). J.S. Bell and R. Jackiw, Nuovo Cimento 51A, 47 (1969). S.L. Adler, in Lectures on elementary particles and quantum field theory, 1970 Brandeis Summer Institute (eds. S. Deser, n. Grisaru and H. Pendleton) (MIT Press, Cambridge, 1971). R. Jackiw, Field theoretic investigations, in Lectures in current algebra and its applications, by S.B. Treiman, R. Jackiw and D.J. Gross (Princeton University Press, N.J., 1972 ) p. 97.Google Scholar
  69. 69).
    The word “anomaly” has been put in quotation marks because it has belatedly been realized that such extra terms in the divergence equations reflect fundamental classical features of differential operators on manifolds, which are expressed by the Atiyah-Singer and related theorems. See, for example, S.W. Hawking, Phys. Letters 60A, 81 (1977). N.K. Nielsen and B. Schroer, CERN preprint TH 2317 (1977); R. Jackiw and C. Rebbi, HIT preprint CTP-619 (1977); Since the “anomalies” are now known to be rather canonical, perhaps we should find a new word for them.ADSCrossRefMathSciNetGoogle Scholar
  70. 70).
    A. de Rujula, H. Georgi and S.L. Glashow, Phys. Rev. Letters 35, 69 (1975). F.A. Wilczek, A. Zee, R.L. Kingsley and S.B. Treiman, Phys. Rev. D 12, 2768 (1975). H. Fritzsch, M. Gell-Mann and P. Minkowski, Ref. 52. S. Pakvasa, W.A. Simmons and S.F. Tuan, Phys. Rev. Letters 35, 702 (1975).ADSCrossRefGoogle Scholar
  71. 71).
    This point of view is not universal. In particular, J.D. Bjorken stresses that the observable effects of “anomalies” at present energies are negligible. The issue is rather one of principle.Google Scholar
  72. 72).
    A.J. Buras and K.F. Gaemers, CERN preprint TH. 2368 (1977). See also A.J. Buras, Nuclear Phys. B125, 125 (1977) and references therein.ADSCrossRefGoogle Scholar
  73. 73).
    B.W. Lee, S. Pakvasa, R.E. Shrock and H. Sugawara, Phys. Rev. Letters 38, 977, 1230 (E) (1977). H. Fritzsch, Phys. Letters 67B, 451 (1977).ADSCrossRefGoogle Scholar
  74. 74).
    T.P. Cheng and L.F. Li, Phys. Rev. Letters 38, 381 (1977).ADSCrossRefGoogle Scholar
  75. 75).
    F.A. Wilczek and A. Zee, Phys. Rev. Letters 38, 531 (1977).ADSCrossRefGoogle Scholar
  76. 76).
    J.D. Bjorken and S. Weinberg, Phys. Rev. Letters 38, 622 (1977).ADSCrossRefGoogle Scholar
  77. 77).
    M.A. Bouchiat and C.C. Bouchiat, Phys. Letters 48B, 111 (1974) and references therein.ADSCrossRefGoogle Scholar
  78. 78).
    This work was reported in Ref. 42. I.B. Khriplovich, Proc. 18th Internat. Conf. on High-Energy Physics, Tbilisi, USSR, 1976 (JINR, Dubna, 1977) p. B180, discusses previous calculations.Google Scholar
  79. 79).
    For a recent flurry of activity, see A. De Rujula, H. Georgi and S.L. Glashow, Harvard preprint HUTP-77/A028 (1977); F.A. Wilczek and A. Zee, Discrete flavour symmetries and a formula for the Cabibbo angle, Princeton preprint (1977); H. Fritzsch, CERN preprint TH. 2358 (1977).Google Scholar
  80. 80).
    M.S. Chanowitz, J. Ellis and N.K. Gaillard, CERN preprint TH 2312 (1977).Google Scholar
  81. 81).
    H. Georgi and S.L. Glashow, Phys. Rev. Letters 32, 438(1974).ADSCrossRefGoogle Scholar
  82. 82).
    H. Fritzsch and P. Minkowski, Ref. 43. H. Georgi, Particles and fields 1974, APS/DPF Williamsburg meeting (ed. C.E. Carlson) (AIP, New York, 1975), p. 575. S.L. Glashow, Harvard preprint HUTP-77/A005 (1977).Google Scholar
  83. 83).
    E. Ma, Phys. Letters 65B, 468 (1976). See also B.W. Lee and S. Weinberg, Ref. 66.ADSCrossRefGoogle Scholar
  84. 84).
    J. Ellis, M.K. Gaillard and D.V. Nanopoulos, Nuclear Phys. B106, 292 (1976).ADSGoogle Scholar
  85. 85).
    A.D. Linde, JETP Letters 23, 64 (1976). S. Weinberg, Phys. Rev. Letters 36, 294 (1976).ADSCrossRefGoogle Scholar
  86. 86).
    M. Veltman, Second threshold in weak interactions, Utrecht preprint (1977). B.W. Lee, C. Quigg and H.B. Thacker, Phys. Rev. Letters 38. 883 (1977). C.E. Vayonakis, New threshold of weak interactions, Athens preprint (1977).ADSCrossRefGoogle Scholar
  87. 87).
    Alternatives to the approach mentioned here include, for example, the possibility that hadrons are weak gauge solitons — see, for example, E. Corrigan, D.I. Olive, D.B. Fairlie and J. Nuyts, Nuclear Phys. B106, 475 (1976); and the use of supersymmetry and/or supergravity — see, for example B. Zumino, CERN preprint TH. 2356 (1977).ADSMathSciNetGoogle Scholar
  88. 88).
    Strictly speaking, it is not necessary that the strong interactions remain asymptotically free at very high Q2. The differences between the gauge boson contributions to the 3 functions control the way that different group couplings approach one another, with fermions cancelling because they form a grand multiplet — see Eq. (3.38).Google Scholar
  89. 89).
    H. Georgi, H.R. Quinn and S. Weinberg, Phys. Rev. Letters 33 451 (1974).ADSCrossRefGoogle Scholar
  90. 90).
    A.J. Buras, J. Ellis, M.K. Gaillard and D.V. Nanopoulos are studying these questions in greater detail.Google Scholar
  91. 91).
    Reference 90 finds that the proton lifetime is 0(104) longer than the dimensional estimate t(proton) ~ M5/m4pwhich was made in Ref. 89 and used uncritically in Ref. 80.Google Scholar
  92. 92).
    F. Reines and M.F. Crouch, Phys. Rev. Letters 32, 493 (1974). Their method was only sensitive to proton decays which produce a muon. In the model discussed here, a large fraction of final states probably do contain a muon — see Ref. 90.ADSCrossRefGoogle Scholar
  93. 93).
    J. Ellis, M.K. Gaillard, D.V. Nanopoulos and S. Rudaz, CERN preprint TH. 2346 (1977).Google Scholar
  94. 94).
    H. Harari, Phys. Letters 57B, 265 (1975) and Ann. Phys. (NY) 94, 391 (1975). S. Pakvasa and H. Sugawara, Phys. Rev. D 14, 305 (1976).ADSGoogle Scholar
  95. 95).
    J. Ellis, M.K. Gaillard and D.V. Nanopoulos, Nuclear Phys. B109, 213 (1976).ADSCrossRefGoogle Scholar
  96. 96).
    J. Bailey et al., Phys. Letters 68B, 191 (1977).ADSCrossRefGoogle Scholar
  97. 97).
    F. Halzen and S. Matsuda, CERN preprint TH. 2354 (1977).Google Scholar
  98. 98).
    T. Appelquist and H.D. Politzer, Phys. Rev. Letters 34, 43 (1975) and Phys. Rev. D 12 1404 (1975).ADSCrossRefGoogle Scholar
  99. 99).
    E. Eichten and K. Gottfried, Phys. Letters 66B, 286 (1977).ADSCrossRefGoogle Scholar
  100. 100).
    J.G. Branson et al., Phys. Rev. Letters 38, 580, 791 (E) (1977).ADSCrossRefGoogle Scholar
  101. 101).
    M.J. Corden et al., Phys. Letters 68B, 96 (1977).ADSCrossRefGoogle Scholar
  102. 102).
    C.E. Carlson and R. Suaya, Phys. Rev. D 15, 1416 (1977). S.D. Ellis, M.B. Einhorn and C. Quigg, Phys. Rev. Letters 36, 1263 (1976). Gluon-gluon collisions cannot give J/ψ or ψ’ directly because of charge conjugation, but the hard reaction could be accompanied by the exchange of a soft gluon which fixes up the quantum numbers so that GG →J/ψ need not proceed through Pc/x intermediate states.ADSCrossRefGoogle Scholar
  103. 103).
    H. Fritzsch, Phys. Letters 67B, 217 (1977).ADSCrossRefGoogle Scholar
  104. 104).
    H.D. Snyder et al., Phys. Rev. Letters 36, 1415 (1976).ADSCrossRefGoogle Scholar
  105. 105).
    B.W. Lee, Phys. Rev. D 15, 3394 (1977) gives references. See also refs. 43, 44, 70.ADSGoogle Scholar
  106. 106).
    K. Kleinknecht, Proc. 17th Internat. Conf. on High Energy Physics, London 1974 (ed. J.R. Smith) ( Rutherford Laboratory Chilton, Didcot, 1974 ), p. 111–23.Google Scholar
  107. 107).
    A. Pais and J.B. Treiman, Phys. Rev. D 12, 2744 (1975).ADSGoogle Scholar
  108. 108).
    N.F. Ramsey, private communication to B.W. Lee, quoted in Ref. 105. The latest published number is 10-23 cm. W.B. Dress, P.D. Miller and N.F. Ramsey, Phys. Rev. D 7, 3147 (1973).ADSGoogle Scholar
  109. 109).
    See also, H. Harari, Ref. 94, in a model where the t and b quarks had much lower masses than are discussed nowadays.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • J. Ellis
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations