Integration of Somatosensory Events in the Posterior Parietal Cortex of the Monkey

  • Lea Leinonen
Part of the Wenner-Gren Center International Symposium Series book series (EMISS, volume 12)


Information entering the somesthetic system through various receptors in various locations is kept rather separate on its way to the cortical projection areas. To serve behavioural purposes, e.g. localization and recognition of objects, information from separate parts of the somatosensory projection areas must be integrated and also compared with the information coming from other sensory organs. The posterior parietal cortex is a terminal for somesthetic association fibres originating in the postcentral gyrus and in the anterior wall of the Sylvian fissure (e.g. Pandya and Kuypers, 1969; Stanton et al., 1977; Seltzer and Pandya, 1980; Pandya and Seltzer, 1982). Additional somesthetic input may reach this area through motor (e.g. Pandya and Kuypers, 1969) and pre-frontal (e.g. Pandya and Kuypers, 1969; Mesulam et al., 1977) cortices, and limbic areas 23 and 24 (Mesulam. et al., 1977; Pandya et al., 1981). Somesthetic input may further be provided by transcallosal (Pandya et al., 1971) and rich intra-areal connections (Seltzer and Pandya, 1980; Pandya and Seltzer, 1982), and by fibres originating in some subcortical structures (e.g. Pearson et al., 1978).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bates, J.A.V., Ettlinger, G. (1960). Posterior biparietal ablations in the monkey. Arch. Neurol., 3, 177–192PubMedCrossRefGoogle Scholar
  2. Bruce, C., Desimone, R.,Gross, C.G., (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the Macaque. J. Neurophysiol, 46, 369–384PubMedGoogle Scholar
  3. Bushnell, M., Goldberg, M.E., Robinson, D.L., (1981). Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J. Neurophysiol., 46, 755–772PubMedGoogle Scholar
  4. Denny-Brown, D., Chambers, R.A. (1958). The parietal lobe and behavior. Res. Publ. Ass. Nerv. Ment. Dis., 36, 35–117Google Scholar
  5. Daffy, F.H., Burchfiel, J.L. (1971). Somatosensory system: organized hierarchy from single units in monkey area 5. Science, 172, 273–275CrossRefGoogle Scholar
  6. Ettlinger, G., Kalsbeck, I.E. (1962). Changes in tactile discrimination and visual reaching after successive and simultaneous bilateral posterior parietal ablations in the monkey. J. Neurol. Neurosurg. Psychiatry, 25, 256–268PubMedCentralPubMedCrossRefGoogle Scholar
  7. Faugier–Grimaud, S., Frenois, C., Stein, D.G. (1978). Effects of posterior parietal lesions on visually guided behavior in monkeys. Neuropsychologia 16, 151–168PubMedCrossRefGoogle Scholar
  8. Fleming, J.F.R., Crosby, E.C. (1955). The parietal lobe as an additional motor area. J. Comp. Neurol., 103, 485–512PubMedCrossRefGoogle Scholar
  9. Heilman, K.M., Pandya, D.M., Karol, E.A., Geschwind, N. (1971). Auditory inattention. Arch. Neural., 24, 323–325CrossRefGoogle Scholar
  10. Hyvärinen, J. (1981). Regional distribution of functions in parietal association area 7 of the monkey. Brain Res., 206, 287–303PubMedCrossRefGoogle Scholar
  11. Hyvärinen, J. (1982). The Parietal Cortex of Monkey and Man, Springer-Verlag, BerlinCrossRefGoogle Scholar
  12. Hyvärinen, J., Hyvdrinen, L., Linnankoski, I. (1981a). Modification of parietal association cortex and functional blindness after binocular deprivation in young monkeys. Exp. Brain Res., 42, 1–8CrossRefGoogle Scholar
  13. Hyvädrinen, J., Hyvärinen, L., Carlson, S. (1981b), Effect of binocular deprivation on parietal association cortex in young monkeys. Doc. Ophthal. Proc. Series, 30, 177–185Google Scholar
  14. Hyvärinen, J., Poranen, A. (1974). Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain, 97, 673–692PubMedCrossRefGoogle Scholar
  15. Kawano, K., Sasaki, M., Yamashita, M. (1980). Vestibular input to visual tracking neurons in the posterior parietal association cortex of the monkey. Neurosci. Lett., 17, 55–60PubMedCrossRefGoogle Scholar
  16. LaMotte, R.H., Acufia, C. (1978). Defects in accuracy of reaching after removal of posterior parietal cortex in monkeys. Brain Res., 139, 309–326PubMedCrossRefGoogle Scholar
  17. Leinonen, L., Nymari, G. (1979). Functional properties of cells in anterolateral part of area 7, associative face area, of awake monkeys. Exp. Brain Res., 34, 321–333PubMedGoogle Scholar
  18. Leinonen, L., Hyvärinen, J., Nyman, G., Linnankoski, I. (1979). Functional properties of neurons in lateral part of associative area 7 in awake monkeys. Exp. Brain Res., 34, 299–320Google Scholar
  19. Leinonen, L. (1980). Functional properties of neurones in the posterior part of area 7 in awake monkey. Acta Physiol. Scand., 108, 301–308PubMedCrossRefGoogle Scholar
  20. Leinonen, L., Hyvärinen, J., Sovijarvi, A.R.A. (1980). Functional properties of neurons in the temporo–parietal association cortex of awake monkey. Exp. Brain Res., 39, 203–215PubMedCrossRefGoogle Scholar
  21. Lynch, J.C., McLaren, J.W. (1979). Effects of lesions of parieto–occipital association cortex upon performance of oculomotor and attention tasks in monkeys. Neurosci. Abstr., 5, 794Google Scholar
  22. Lynch, J.C., McLaren, J.W. (1983). Optokinetic nystagmus deficits following parieto–occipital cortex lesions in monkeys. Exp. Brain Res., 49, 125–130PubMedCrossRefGoogle Scholar
  23. Lynch, J.C., Mountcastle, V.B., Talbot, W.H., Yin, T.C.T. (1977). Parietal lobe mechanisms for directed visual attention. J. Neurophysiol., 40, 362–389PubMedGoogle Scholar
  24. MacKay, W.A., Kwan, M.C., Murphy, J.T., Wong, Y.C. (1978). Responses to active and passive wrist rotation in area 5 of awake monkeys. Neurosci. Lett., 10, 235–239PubMedCrossRefGoogle Scholar
  25. Mesulam, M.-M., van Hoesen, G.W., Pandya, D.N., Geschwind, N. (1977). Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res., 136, 393–414PubMedCrossRefGoogle Scholar
  26. Motter, B.C., Mountcastle, V.B. (1981). The functional properties of the light–sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization. J. Neurophysiol., 38, 871–908Google Scholar
  27. Munk, H. (1881). Ueber die Funktionen der Grosshirnrinde: Gesammelte Mitteilungen aus den Jahren 1877–80. August Hirschwald, BerlinGoogle Scholar
  28. Murray, E.A., Coulter, J.D. (1981). Supplementary sensory area. The medial parietal cortex in the monkey. In Multiple Somatic Areas. (ed. C.N. Woolsey ). Humana Press, Clifton, pp. 167–195Google Scholar
  29. Pandya, D.N., Karol, E.A., Heilbronn, D. (1971). The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res., 32, 31–43PubMedCrossRefGoogle Scholar
  30. Pandya, D.N., Kuypers, H.G.J.M. (1969). Cortico–cortical connections in the rhesus monkey. Exp. Brain Res., 13, 13–36CrossRefGoogle Scholar
  31. Pandya, D.N., Sanides, F. (1973). Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z. Anat. Entwickl. Gesch. 139, 127–161CrossRefGoogle Scholar
  32. Pandya, D.N., Seltzer, B. (1982). Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J. Comp. Neurol. 204, 196–210PubMedCrossRefGoogle Scholar
  33. Pandya, D.N., van Hoesen, G.W., Mesulam, M.-M. (1981). Efferent connections of the cingulate gyros in the rhesus monkey. Exp. Brain Res., 42, 319–330PubMedGoogle Scholar
  34. Pearson, R.C.A., Brodal, P., Powell, T.P.S. (1978). The projection of the thalamus upon the parietal lobe in the monkey. Brain Res., 144, 143–148PubMedCrossRefGoogle Scholar
  35. Peele. T.L. (1942). Cytoarchitecture of individual parietal areas in the monkey (Macaca mulatta) and the distribution of the efferent fibers. J. Comp. Neurol., 77, 693–738CrossRefGoogle Scholar
  36. Peele, T.L. (1944). Acute and chronic parietal lobe ablations in monkeys. J. Neurophysiol., 7, 269–286Google Scholar
  37. Petrides, M., Iversen, S.D. (1979). Restricted posterior parietal lesions in the rhesus monkey and performance on visuospal tasks. Brain Res., 161, 63–79PubMedCrossRefGoogle Scholar
  38. Ratcliff, G., Ridley, R.M., Ettlinger, G. (1977). Spatial disorientation in the monkey. Cortex, 13, 62–65PubMedCrossRefGoogle Scholar
  39. Robinson, C.J., Burton, H. (1989b). Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insular of M. fascicularis. J. Comp. Neural., 192, 69–92CrossRefGoogle Scholar
  40. Robinson, C.J., Burton, H. (1980b). Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, postauditory, and granular insular cortical areas of M. fascicularis. J. Comp. Neural., 192, 93–108CrossRefGoogle Scholar
  41. Robinson, D.L., Goldberg, M.E., Stanton, G.B. (1978). Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. J. Neurophysiol., 41, 910–932PubMedGoogle Scholar
  42. Ruch, T.C., Fulton, J.F., German, W.J. (1938). Sensory discrimination in monkey, chimpanzee and man after lesions of the parietal lobe. Arch. Neural. Psychiatry 39, 919–938CrossRefGoogle Scholar
  43. Sakata, H. (1975). Somatic sensory responses of neurons in the parietal association area (area 5) of monkeys. In The Somatosensory System. (ed. H.H. Kornhuber ). Georg Thieme, Stuttgart. pp. 250–261Google Scholar
  44. Sakata, H., Iwamura, Y. (1978). Cortical processing of tactile information in the first somatosensory and parietal association areas in the monkey. In Active Touch. (ed. G. Gordon ). Pergamon Press, London, pp. 55–72Google Scholar
  45. Sakata, H., Takaoka, Y., Kawarasaki, A., Shibutani, H. (1973). Somatosensory properties of neurons in the superior parietal cortex (area 5), of the rhesus monkey. Brain Res., 64, 85–102PubMedCrossRefGoogle Scholar
  46. Sakata, H., Shibutani, H., Kawano, K. (1980). Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. J. Neurophysiol., 43, 1654–1672PubMedGoogle Scholar
  47. Seal, J., Gross, C., Bioulac, B. (1982). Activity of neurons in area 5 during a simple arm movement in monkeys before and after deafferentation of the trained limb. Brain Res., 250, 229–243PubMedCrossRefGoogle Scholar
  48. Seltzer, B., Pandya, D.N. (1980). Converging visual and somatic sensory cortical input to the intraparietal sulcus of the rhesus monkey. Brain Res., 192, 339–351PubMedCrossRefGoogle Scholar
  49. Seltzer, B., Pandya, D.N. (1978). Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Rest, 149, 1–24CrossRefGoogle Scholar
  50. Semmes Blum, J., Chow, K.L., Pribram, K.H. (1950). A behavioral analysis of the organization of the parieto–temporo–preoccipital cortex. J. Comp. Neural., 93, 53–100CrossRefGoogle Scholar
  51. Stanton, G.B., Cruce, W.L.R., Goldberg, M.E., Robinson, D.L. (1977). Some ipsilateral projections to areas PF and PG of the inferior parietal lobule in monkeys. Neurosci. Lett., 6, 243–250PubMedCrossRefGoogle Scholar
  52. Sugishita, M., Ettlinger, G., Ridley, R.M. (1978). Disturbance of cage–finding in the monkey. Cortex, 14, 431–438PubMedCrossRefGoogle Scholar
  53. Yin, T.C.T., Mountcastle, V.B. (1977). Visual input to the visuomotor mechanisms of the monkey’s parietal lobe. Science, 197, 1381–1383PubMedCrossRefGoogle Scholar

Copyright information

© The Wenner-Gren Center 1984

Authors and Affiliations

  • Lea Leinonen
    • 1
  1. 1.Department of PhysiologyUniversity of HelsinkiHelsinki 17Finland

Personalised recommendations