Advertisement

Descending Control of Nociceptive Transmission by Primate Spinothalamic Neurons

  • W. D. Willis
Chapter
Part of the Wenner-Gren Center International Symposium Series book series (EMISS, volume 12)

Abstract

The spinothalamic tract in primates, including man, is thought to play a crucial role in nociception. Interruption of the anterolateral quadrant of the spinal cord, through which the spinothalamic tract ascends, results in analgesia on the contralateral side below the lesion (White & Sweet, 1955). Pain sensation is present when just one anterolateral quadrant of the cord is intact, as shown by the patient reported by Noordenbos and Wall (1976). Thus the anterolateral quadrant is both necessary and sufficient for pain sensation in humans. A comparable pathway also exists in monkeys (Vierck & Luck, 1979).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abols, I.A., Basbaum, A.I. (1981). Afferent connections of the rostral medulla of the cat: a neural substrate for midbrainmedullary interactions in the modulation of pain. J. Comp. Neurol., 201, 285–297Google Scholar
  2. Basbaum, A.I., Clanton, C.H., Fields, H.L. (1978). Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems. J. Comp. Neurol., 178, 209–224Google Scholar
  3. Basbaum, A.I., Fields, H.L. (1978). Endogenous pain control mechanisms: Review and hypothesis. Ann. Neurol., 4, 451–462Google Scholar
  4. Basbaum, A.I., Marley, N.J.E., O’Keefe, J., Clanton, C.H. (1977). Reversal of morphine and stimulus-produced analgesia by subtotal spinal cord lesions. Pain, 3, 43–56PubMedCrossRefGoogle Scholar
  5. Bourgoin, S., Oliveras, J.L., Bruxelle, J., Hamon, M., Besson, J.M. (1980). Electrical stimulation of the nucleus raphe magnus in the rat. Effects of 5-HT metabolism in the spinal cord. Brain Res., 194, 377–389PubMedCrossRefGoogle Scholar
  6. Bowker, R.M., Westlund, K.N., Coulter, J.D., (1981). Origins of serotonergic projections to the spinal cord in rat: an immunocytochemical-retrograde transport study. Brain Res., 226, 187–199PubMedCrossRefGoogle Scholar
  7. Carstens, E., Fraunhoffer, M., Zimmermann, M., (1981). Serotonergic mediation of descending inhibition from midbrain periaqueductal gray, but not reticular formation, of spinal nociceptive transmission in the cat. Pain, 10, 149–167PubMedCrossRefGoogle Scholar
  8. Carstens, E., Yokota, T., Zimmermann, M. (1979). Inhibition of spinal neuronal responses to noxious skin heating by stimulation of mesencephalic periaqueductal gray in the cat. J. Neurophysiol., 42, 558–568PubMedGoogle Scholar
  9. Chung, J.M., Kevetter, G.A., Yezierski, R.P., Haber, L.H., Martin, R.F., Willis, W.D., (1983). Midbrain muclei projecting to the medial medulla oblongata in the monkey. J. Comp. Neurol., 214, 93–102Google Scholar
  10. Ellaway, P.H. (1978). Cumulative sum technique and its application to the analysis of peristimulus time histograms. Electrocencephalogr. Clin. Neurophysiol., 45, 302–304Google Scholar
  11. Fields, H.L., Anderson, S.D. (1978). Evidence that raphe-spinal neurons mediate opiate and midbrain stimulation-produced analgesias. Pain, 5, 333–349PubMedCrossRefGoogle Scholar
  12. Foreman, R.D., Schmidt, R.F., Willis, W.D. (1979). Effects of mechanical and chemical stimulation of fine muscle afferents upon primate spinothalamic tract cells. J. Physiol., 286, 215–231PubMedCentralPubMedGoogle Scholar
  13. Gerhart, K.D., Yezierski, R.P., Fang, Z.R., Willis, W.D. (1983). Inhibition of primate spinothalamic tract neurons by stimulation in ventral posterior lateral (VPLC) thalamic nucleus: possible mechanisms. J. Neurophysiol., 49, 406–423PubMedGoogle Scholar
  14. Gerhart, K.D., Wilcox, T.K., Chung, J.M., Willis, W.D. (1981a). Inhibition of nociceptive and nonnociceptive responses of primate spinothalamic cells by stimulation in medial brain stem. J. Neurophysiol., 45, 121–136PubMedGoogle Scholar
  15. Gerhart, K.D., Yezierski, R.P., Giesler, G.J., Willis, W.D. (1981b). Inhibitory receptive fields of primate spinothalamic tract cells. J. Neurophysiol., 46, 1309–1325PubMedGoogle Scholar
  16. Gerhart, K.D., Yezierski, R.P., Wilcox, T.K., Grossman, A.E., Willis, W.D. (1981c). Inhibition of primate spinothalamic tract neurons by stimulation in ipsilateral or contralateral ventral posterior lateral (VPLc) thalamic nucleus. Brain Res., 229, 514–519PubMedCrossRefGoogle Scholar
  17. Gerhart, K.D., Yezierski, R.P., Wilcox, T.K., Willis, W.D. (1984). Inhibition of primate spinothalamic tract neurons by stimulation in the periqueductal gray or adjacent midbrain reticular formation. SubmittedGoogle Scholar
  18. Guilbaud, G., Besson, J.M., Oliveras, J.L., Liebeskind, J.C. (1973). Suppression by LSD of the inhibitory effect exerted by dorsal raphe stimulation on certain spinal cord interneurons in the cat. Brain Res., 61, 417–422PubMedCrossRefGoogle Scholar
  19. Haber, L.H., Moore, B.D., Willis, W.D. (1982). Electrophysiological response properties of spinoreticular neurons in the monkey. J. Comp. Neural., 207, 75–84Google Scholar
  20. Haigler, H.J., Aghajanian, G.K. (1974). Peripheral serotonin antagonists: Failure to antagonize serotonin in brain areas receiving a prominent serotonergic input. J. Neural Transm., 35, 257–273Google Scholar
  21. Hosobuchi, Y., Adams, J.E., Rutkin, B. (1973). Chronic thalamic stimulation for the control of facial anaesthesia dolorosa. Arch. Neural., 29, 158–161Google Scholar
  22. Le Bars, D., Dickenson, A.H., Besson, J.M. (1979a). Diffuse noxious inhibitory controls (DNIC). I. Effects of dorsal horn convergent neurones in the rat. Pain, 6. 283–304Google Scholar
  23. Le Bars, D., Dickenson, A.H., Benson, J.M. (1979b). Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain, 6, 305–327Google Scholar
  24. Martin, R.F., Jordan, L.M., Willis, W.D. (1978). Differential projections of cat medullary raphe neurons demonstrated by retrograde labeling following spinal cord lesions. J. Comp. Neural., 182, 77–88Google Scholar
  25. Mazars, G.J. (1975). Intermittent stimulation of nucleus ventralis posterolateralis for intractable pain. Surg. Neural., 4, 93–95Google Scholar
  26. Milne, R.J., Foreman, R.D., Giesler, G.J., Willis, W.D. (1981). Convergence of cutaneous and pelvic visceral nociceptive inputs onto primate spinothalamic neurons. Pain, 11, 163–183PubMedCrossRefGoogle Scholar
  27. Noordenbos, W., Wall, P.D. (1976). Diverse sensory functions with an almost totally divided spinal cord. A case of spinal cord transection with preservation of part of one anterolateral quadrant. Pain, 2. 185–195Google Scholar
  28. Oliveras, J.L., Besson, J.M., Guilbaud, G., Liebeskind, J.C. (1574). Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat. Exp. Brain Res., 20, 32–44Google Scholar
  29. Oliveras, J.L., Hosobuchi, Y., Guilbaud, G., Besson, J.M. (1978). Analgesic electrical stimulation of the feline nucleus raphe magnus: development of tolerance and its reversal by 5-HTP. Brain Res., 146, 404–409PubMedCrossRefGoogle Scholar
  30. Oliveras, J.L., Redjemi, F., Guilbaud, G., Besson, J.M. (1975). Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain, 1, 139–145PubMedCrossRefGoogle Scholar
  31. Peroutka, S.J., Lebovitz, R.M., Snyder, S.H. (1981). Two distinct central serotonin receptors with different physiological functions. Science, 212, 827–829PubMedCrossRefGoogle Scholar
  32. Reynolds, D.V. (1969). Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science, 164, 444–445PubMedCrossRefGoogle Scholar
  33. Rivot, J.P., Chaouch, A., Besson, J.M. (1980). Nucleus raphe magnus modulation of response of rat dorsal horn neurons to unmyelinated fiber inputs: partial involvement of serotonergic pathways. J. Neurophysiol., 44, 1039–1057PubMedGoogle Scholar
  34. Tsubokawa, T., Yamamoto, T., Katayama, Y., Noriyasu, N. (1982). Clinical results and physiological basis of thalamic relay nucleus stimulation for relief of intractable pain with morphine tolerance. Appl. Neurophysiol., 45, 143–155Google Scholar
  35. Vierck, C.J., Luck, M.M. (1979). Loss and recovery of reactivity to noxious stimuli in monkeys with primary spinothalamic cordotomies, followed by secondary and tertiary lesions of other cord sectors. Brain, 102, 233–248PubMedCrossRefGoogle Scholar
  36. White, J.C., Sweet, W.H. (1955). Pain. Its Mechanisms and Neurosurgical Control. Thomas, SpringfieldGoogle Scholar
  37. White, J.C., Sweet, W.H. (1955). Pain. Its Mechanisms and Neurosurgical Control. Thomas, SpringfieldGoogle Scholar
  38. Willis, W.D. (1982). control of nociceptive transmission in the spinal cord. In: Progress in Sesnory Physiology 3. (ed. D. Ottoson ). Springer-Verlag, BerlinCrossRefGoogle Scholar
  39. Willis, W.D., Coggeshall, R.E. (1978). Sensory Mechanisms of the Spinal Cord. Plenum Press, New YorkCrossRefGoogle Scholar
  40. Willis, W.D., Gerhart, K.D., Willcockson, W.S., Yezierski, R.P., Wilcox, T.K., Cargill, C.L. (1984). Primate raphe- and reticulospinal neurons: effects of stimulation in periaqueductal gray or VPLc thalamic nucleus. SubmittedGoogle Scholar
  41. Willis, W.D., Haber, L.H.,Martin, R.F., (1977). Inhibition of spinothalamic tract cells and interneurons by brain stem stimulation in the monkey. J. Neurophysiol., 40, 968–981Google Scholar
  42. Willis, W.D., Trevino, D.L., Coulter, J.D., Maunz, R.A. (1974). Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J. Neurophysiol., 37, 358–372PubMedGoogle Scholar
  43. Yezierski, R.P., Bowker, R.M., Kevetter, G.A., Westlund, K.N., Coulter, J.D., Willis, W.D. (1982a). Serotonergic projections to the caudal brain stem: a double label study using horse-radish peroxidase and serotonin immunocytochemistry. Brain Res., 239, 258–264PubMedCrossRefGoogle Scholar
  44. Yezierski, R.P., Wilcox, T.K., Willis, W.D. (1982b). The effects of serotonin antagonists on the inhibition of primate spinothalamic tract cells produced by stimulation in nucleus raphe magnus or periaqueductal gray. J. Pharm. Exp. Therap., 220, 266–277Google Scholar

Copyright information

© The Wenner-Gren Center 1984

Authors and Affiliations

  • W. D. Willis
    • 1
  1. 1.Marine Biomedical Institute and Departments of Physiology and Biophysics, and AnatomyUniversity of Texas BranchGalvestonUSA

Personalised recommendations