Advertisement

The Use of Multiply Marked Escherichia coli K12 Strains in the Host-Mediated Assay

  • G. R. Mohn
  • P. R. M. Kerklaan
  • P. A. van Elburg
Chapter

Abstract

Due to the development in the last decade of rapid and sensitive bacterial genetic test systems for detecting potential mutagens and carcinogens(1–3) there has been a recrudescence of testing of environmental chemicals for genotoxicity. Experiments performed in particular with theSalmonella/mammalian microsome test,(4,5) in which the ability of chemicals to cause reversion in auxotrophicSalmonella strains is determined on selective agar medium under the influence of various mammalian organ fractions, have yielded results on a variety of environmental compounds that show definite mutagenic activity in this assay system and are therefore to be considered as potentially mutagenic and carcinogenic in animals (see also Refs. 6 and 7).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. Kilbey, M. Legator, W. Nichols, and C. Ramel, (eds.),Handbook of Mutagenicity Test Procedures, Elsevier, Amsterdam (1984).Google Scholar
  2. 2.
    K. H. Norpoth, and R. C. Garner, (eds.),Short-Term Test Systems for Detecting Carcinogens, Springer, Berlin (1980).Google Scholar
  3. 3.
    F. J. de Serres and J. Ashby, (eds.),Evaluation of Short-Term Tests for Carcinogens, Elsevier/North-Holland, Amsterdam (1981).Google Scholar
  4. 4.
    B. N. Ames, J. McCann, and E. Yamasaki, Methods for detecting carcinogens and mutagens with theSalmonella/mammalian microsome mutagenicity test,Mutat. Res. 31, 347–364 (1975).CrossRefGoogle Scholar
  5. 5.
    D. M. Maron and B. N. Ames, Revised methods for theSalmonella mutagenicity test,Mutat. Res. 113, 173–215 (1983).CrossRefGoogle Scholar
  6. 6.
    ICPEMC, International Commission for Protection against Environmental Mutagens and Carcinogens, Committee 1 Final Report,Mutat. Res. 114, 117–177 (1983).CrossRefGoogle Scholar
  7. 7.
    ICPEMC,International Commission for Protection against Environmental Mutagens and Carcinogens, Committee 2 Final Report, Elsevier Biomedical Press, Amsterdam (1982).Google Scholar
  8. 8.
    J. McCann, E. Choi, E. Yamasaki, and B. N. Ames, Detection of carcinogens as mutagens in theSalmonella/microsome test: Assay of 300 chemicals, Proc. Natl. Acad. Sei. USA 12, 4135–5139 (1975).Google Scholar
  9. 9.
    F. J. de Serres and M. D. Shelby, (eds.),Comparative Chemical Mutagenesis, Springer Science+Business Media New York (1981).Google Scholar
  10. 10.
    IARC,International Agency for Research on Cancer Monographs, Long-Term and Short-Term Screening Assays for Carcinogenesis: A Critical Appraisal, I ARC, Lyon (1980).Google Scholar
  11. 11.
    J. McCann and B. N. Ames, TheSalmonella/microsome mutagenicity test: Predictive value for animal carcinogenicity, in:Origins of Human Cancer (H. H. Hiattet al, eds.), Book C, pp. 1431–1450, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1977).Google Scholar
  12. 12.
    M. Meselson and K. Russell, Comparisons of carcinogenic and mutagenic potency, in:Origins of Human Cancer (H. H Hiattet al., eds.), Book C, pp. 1473–1481, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1977).Google Scholar
  13. 13.
    B. N. Ames and K. Hooper, Does carcinogenic potency correlate with mutagenic potency in the Ames assay?Nature 214, 19–20 (1978).CrossRefGoogle Scholar
  14. 14.
    J. Ashby and J. A. Styles, Factors affecting mutagenic potency in vitro,Nature 214, 20–22 (1978).CrossRefGoogle Scholar
  15. 15.
    J. Ashby, Implications of carcinogenicity, in:Mutagenesis in Sub-mammalian Systems. Status and Significance (F. E. Paget, ed.), pp. 165–184, MIT Press, Cambridge, Massachusetts (1979).CrossRefGoogle Scholar
  16. 16.
    G. R. Mohn, Bacterial systems for carcinogenicity testing,Mutat. Res. 87, 191–210 (1981).CrossRefGoogle Scholar
  17. 17.
    G. R. Mohn, On the correlation between mutagenicity and carcinogenicity, in:Genetic Origins of Tumor Cells (F. J. Cleton and J. W. I. M. Simons, eds.), pp. 11–24, Martinus Nijhoff, The Hague (1980).CrossRefGoogle Scholar
  18. 18.
    E. P. Reddy, R. K. Reynolds, E. Santos, and M. Barbacid, A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene,Nature 300, 149–152 (1982).CrossRefGoogle Scholar
  19. 19.
    G. Mardon and H. E. Varmus, Frameshift and intragenic suppressor mutations in a Rous sarcoma provirus suggestsrc encodes two proteins,Cell 32, 871–879 (1983).CrossRefGoogle Scholar
  20. 20.
    E. Taparowsky, Y. Suard, O. Fasano, K. Shimizu, M. Goldfarb, and M. Wigler, Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change,Nature 300, 762–765 (1982).CrossRefGoogle Scholar
  21. 21.
    G. R. Mohn, A. A. van Zeeland, and B. W. Glickman, Influence of experimental conditions and DNA repair ability on EMS-induced mutagenesis and DNA binding inEscherichia coli K-12. Comparison with mammalian cell mutagenesis,Mutat. Res. 92, 15–27 (1982).CrossRefGoogle Scholar
  22. 22.
    C. S. Aaron, A. A. van Zeeland, G. R. Mohn, A. T. Natarajan, A. G. A. C. Knaap, A. D. Tates, and B. W. Glickman, Molecular dosimetry of the chemical mutagen ethyl methanesulfonate. Quantitative comparison of mutation induction inEscherichia coli, V79 Chinese hamster cells and L5178Y mouse lymphoma cells, and some cytological resultsin vitro andin vivo, Mutat. Res.69, 201–216 (1980).CrossRefGoogle Scholar
  23. 23.
    G. R. Mohn, T.-M. Ong, D. F. Callen, P. G. N. Kramers, and C. S. Aaron, Comparison of the genetic activity of 5-nitroimidazole derivatives inEscherichia coli, Neurospora crassa, Saccharomyces cerevisiae, andDrosophila melanogaster, J. Environ. Pathol. Toxicol.2, 657–670 (1979).Google Scholar
  24. 24.
    M. G. Gabridge, A. DeNunzio, and M. S. Legator, Microbial mutagenicity of streptozotocin in animal-mediated assays,Nature 221, 68–70 (1969).CrossRefGoogle Scholar
  25. 25.
    G. M. Williams, R. Kroes, H. W. Waaijers, and K. W. van de Poll, eds.,Predictive Value of Short-Term Screening Tests in Carcinogenicity Evaluation, Elsevier/North-Holland, Amsterdam (1980).Google Scholar
  26. 26.
    G. Mohn and J, Ellenberger, Mammalian blood-mediated mutagenicity tests using a multipurpose strain ofEscherichia coli K-12,Mutat. Res. 19, 257–260 (1973).CrossRefGoogle Scholar
  27. 27.
    G. Mohn, J. Ellenberger, D. McGregor, and H.-J. Merker, Mutagenicity studies in microorganismsin vitro, with extracts of mammalian organs, and with the host-mediated assay,Mutat. Res. 29, 221–233 (1975).CrossRefGoogle Scholar
  28. 28.
    P. Kerklaan, G. Mohn, and S. Bouter, Comparison of the mutagenic activity of dialkylnitrosamines in animal-mediated andin vitro assays using anEscherichia coli indicator,Carcinogenesis 2, 909–914 (1981).CrossRefGoogle Scholar
  29. 29.
    P. Kerklaan, S. Bouter, and G. Mohn, Mutagenic activity of three isomeric N-nitroso-N-methylamino-pyridines towardsEscherichia coli K-12in vitro and animal-mediated assays,Carcinogenesis 3, 415–421 (1982).CrossRefGoogle Scholar
  30. 30.
    G. R. Mohn and J. Ellenberger, The use ofEscherichia coli K-12/343/113(λ) as a multipurpose indicator strain in various mutagenicity testing procedures, in:Handbook of Mutagenicity Test Procedures (B. Kilbeyet al, eds.), pp. 95–118, Elsevier/North-Holland, Amsterdam (1977).Google Scholar
  31. 31.
    B. J. Bachmann and K. B. Low, Linkage map ofEscherichia coli K-12, edition 6,Microbiol. Rev. 44, 1–56 (1980).Google Scholar
  32. 32.
    R. Favre, A. Wiater, S. Puppo, M. Iaccarino, R. Noelle, and M. Freundlich, Expression of a valine-resistant acetolactate synthase activity mediated by theilvO andilvG genes ofEscherichia coli K-12,Mol. Gen. Genet. 143, 243–252 (1976).CrossRefGoogle Scholar
  33. 33.
    M. W. Hane and T. H. Wood,Escherichia coli K-12 mutants resistant to nalidixic acid: Genetic mapping and dominance studies,J. Bacteriol. 99, 238–241 (1969).Google Scholar
  34. 34.
    P. Howard-Flanders and L. Theriot, Mutants ofEscherichia coli K-12 defective in DNA repair and in genetic recombination,Genetics 53, 1137–1150 (1966).Google Scholar
  35. 35.
    T. Kato and S. Kondo, Two types of x-ray sensitive mutants ofEscherichia coli B: Their phenotypic characters compared with UV sensitive mutants,Mutat. Res.4, 253– 263 (1967).CrossRefGoogle Scholar
  36. 36.
    A. Rörsch, P. van de Putte, I. E. Mattern, and H. Zwenk, in:Radiation Research. Proceeding of the Third International Congress of Radiation Research ( G. Silini, ed.), pp. 771–789, Elsevier/North-Holland, Amsterdam (1967).Google Scholar
  37. 37.
    R. P. Boyce and P. Howard-Flanders, Genetic control of DNA breakdown and repair inE. coli K-12 treated with mitomycin C or ultraviolet light,Z. Vererbungsl.95, 345– 350 (1964).Google Scholar
  38. 38.
    K. W. Kohn, H. H. Steigbigel, and C. L. Spears, Cross-linking and repair of DNA in sensitive and resistant strains ofE. coli treated with nitrogen mustard,Proc. Natl. Acad. Sei. USA 53, 1154–1161 (1965).CrossRefGoogle Scholar
  39. 39.
    P. de Lucia and J. Cairns, Isolation of anE. coli strain with a mutation affecting DNA polymerase,Nature 224, 1164–1166 (1969).CrossRefGoogle Scholar
  40. 40.
    P. E. Hartman, Bacterial mutagenesis: Review of new insights,Environ. Mutagen. 2, 3–16 (1980).CrossRefGoogle Scholar
  41. 41.
    P. C. Hanawalt, P. K. Cooper, A. K. Ganesan, and C. A. Smith, DNA repair in bacteria and mammalian cells,Annu. Rtv. Biochem. 48, 783–836 (1979).CrossRefGoogle Scholar
  42. 42.
    E. E. Slater, M. D. Anderson, and H. S. Rosenkranz, Rapid detection of mutagens and carcinogens,Cancer Res.31, 970–973 (1971).Google Scholar
  43. 43.
    T. Kada, K. Tutikawa, and J. Sadaie,In vitro and host-mediated“rec-assay” procedures for screening chemical mutagens; and phloxine, a mutagenic red dye detected,Mutat. Res. 16, 165–174 (1972).CrossRefGoogle Scholar
  44. 44.
    M. Nagao and T. Sugimura, Sensitivity of repair-deficient mutants and similar mutants to N-nitroquinoline-l-oxide, N-nitropyridine-l-oxide, and their derivatives,Cancer Res.31, 2369–2374 (1972).Google Scholar
  45. 45.
    Z. Leifer, T. Kada, M. Mandel, E. Zeiger, R. Stafford, and H. S. Rosenkranz, An evaluation of tests using DNA repair-deficient bacteria for predicting genotoxicity and carcinogenicity, A report of the US EPA’s Gene-Tox program,Mutat. Res. 87, 211–297 (1981).CrossRefGoogle Scholar
  46. 46.
    R. E. W. Hancock and P. Reeves, Lipolysaccharide-deficient bacteriophage-resistant mutants ofEscherichia coli K-12,J. Bacteriol. 127, 98–108 (1980).Google Scholar
  47. 47.
    B. N. Ames, F. D. Lee, and W. E. Durston, An improved bacterial test system for the detection and classification of mutagens and carcinogens,Proc. Natl. Acad. Sci. USA 70, 782–786.Google Scholar
  48. 48.
    G. Mohn, P. Kerklaan, P. de Knijff, and S. Bouter, Influence of phenotypic expression lag and division delay on apparent frequencies of induced mutations inEscherichia coli K-12,Mutat. Res. 91, 419–425 (1981).CrossRefGoogle Scholar
  49. 49.
    M. Lipkin and R. Good, eds.,Gastro-Intestinal Tract Cancer and Carcinogenesis, Springer Science+Business Media New York (1978).Google Scholar
  50. 50.
    L. A. Wheeler, J. H. Carter, F. B. Soderberg, and P. Goldman, Association ofSalmonella mutants with germfree rats: Site specific model to detect carcinogens as mutagens,Proc. Natl. Acad. Sei. USA 72, 4607–4611 (1975).CrossRefGoogle Scholar
  51. 51.
    R. Barale, D. Zucconi, M. Romano, and N. Loprieno, The intragastric host-mediated assay for the assessment of the formation of direct mutagensin vivo, Mutat. Res.113, 21–32 (1983).CrossRefGoogle Scholar
  52. 52.
    E. Baibinder, G. I. Reich, D. Shugarts, J. Keogh, R. Fibiger, T. Jones, and A. Banks, Relative mutagenicity of some urinary metabolites of the anti-tumor drug cyclophosphamide,Cancer Res.41, 2967–2972 (1981).Google Scholar
  53. 53.
    K. Yano and M. Isobe, Mutagenicity ofN-methyl-N’-aryl-N-nitrosoureas andN- methyl-N’-methyl-N-nitrosoureas in relation to their alkylating activity,Cancer Res.39, 5147–5149 (1979).Google Scholar
  54. 54.
    K. Hemminki and K. Falck, Correlation of mutagenicity and 4-(p-nitrobenzyl)-pyridine alkylation by epoxides,Toxicol. Lett. 4, 103–106 (1979).CrossRefGoogle Scholar
  55. 55.
    E. Eder, T. Neudecker, D. Lutz, and D. Henschler, Mutagenic potential of allyl and allylic compounds. Structure-activity relationship as determined by alkylating and directin vitro mutagenic properties,Biochem. Pharmacol. 29, 993–998 (1980).CrossRefGoogle Scholar
  56. 56.
    A. W. Wood, R. L. Chang, W. Levin, D. E. Ryan, P. E. Thomas, R. E. Lehr, S. Kumar, M. Schaefer-Ridder, U. Engelhardt, H. Yagi, D. M. Jerina, and A. H. Conney, Mutagenicity of diolepoxides and tetrahydroepoxides of benz(a)acridine and benz(c)acridine in bacteria and in mammalian cells,Cancer Res.43, 1656–1662 (1983).Google Scholar
  57. 57.
    R. Majumbar, S. C. Mathur, and K. Roy, Mutagenicity and K-region reactivity of monomethyl derivatives of benz(a)anthracene in a self-consistent-field molecular orbital theory,Biochem. Biophys. Res. Commun. 106, 836–841 (1982).CrossRefGoogle Scholar
  58. 58.
    R. Hauser and B. Matter, Localization ofE. coli K-12 in livers of mice used for an intrasanguineous host-mediated assay,Mutat. Res. 46, 45–48 (1977).CrossRefGoogle Scholar
  59. 59.
    P. Arni, The microbial host-mediated assay in comparison within vitro systems: Problems and evaluation, predictive value, and practical application, in:Short-Term Test Systems for Detecting Carcinogens (K. H. Norpoth and R. C. Garner, eds.), pp. 190– 198, Springer, Berlin (1980).CrossRefGoogle Scholar
  60. 60.
    D. Frezza, B. Smith, and E. Zeiger, The intrasanguineous host-mediated assay procedure usingSaccharomyces cerevisiae: Comparison with two other metabolic activation systems,Mutat. Res. 108, 161–168 (1983).CrossRefGoogle Scholar
  61. 61.
    W.-Z. Whong and T. Ong, Mediated mutagenesis of dimethylnitrosamine inNeurospora crassa by various metabolic activation systems,Cancer Res.39, 1525–1528 (1979).Google Scholar
  62. 62.
    H. Druckrey, R. Preussmann, S. Ivankovic, and D. Schmähl, Organotrope carcinogene Wirkungen bei 65 verschiedenenN-Nitroso Verbindungen an BD Ratten, Z.Kerbs– forsch.69, 103–201 (1967).CrossRefGoogle Scholar
  63. 63.
    W. Lijinsky, M. D. Reuber, and W. B. Manning, Potent carcinogenicity of nitrosodi-ethanolamine in rats,Nature 288, 289–590 (1980).CrossRefGoogle Scholar
  64. 64.
    G. Reznik, U. Mohr, and F. W. Krüger, Carcinogenic effect of di-n-propyl-nitrosamine, ß-hydroxy-propyl-n-propylnitrosamine, and methyl-n-propyl-nitrosamine on Sprague Dawley rats,J. Natl. Cancer Inst. 54, 937–943 (1975).Google Scholar
  65. 65.
    G. R. Mohn, P. R. M. Kerklaan, W. P. C. ten Bokkum-Coenradi, and T. E. M. ten Hulscher, A differential DNA repair test using mixtures of strains ofE. coli K-12 in liquid suspension and animal-mediated assays,Mutat. Res. 113, 404–415 (1983).Google Scholar
  66. 66.
    P. N. Magee and J. M. Barnes, Carcinogenic nitroso compounds,Adv. Cancer Res. 10, 163–246 (1967).CrossRefGoogle Scholar
  67. 67.
    A. E. Pegg and J. W. Nicoll, Nitrosamine carcinogenesis: The importance of the persistence in DNA of alkylated bases in the organotropism of tumor induction, in:Screening Tests in Chemical Carcinogenesis (R. Montesano, H. Bartsch, and L. Tomatis, eds.), pp. 571–590, IARC, Lyon (1976).Google Scholar
  68. 68.
    IARC,Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 17,Some Nitroso Compounds, IARC, Lyon (1978).Google Scholar
  69. 69.
    IARC,Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 7,Some Anti-thyroid and Related Substances, Nitrofurans and Industrial Chemicals, IARC, Lyon (1974).Google Scholar
  70. 70.
    B. F. Swann and P. N. Magee, Nitrosamine induced carcinogenesis. The alkylation of nucleic acids of the rat byN-methyl-N-nitrosourea, dimethyl nitrosamine, and methyl methanesulfonate,Biochem.J. 110, 39–47 (1968).Google Scholar
  71. 71.
    B. F. Swann, The rate of breakdown of methyl methanesulphonate, dimethyl sulfate andN-methyl-N-nitrosourea in the rat,Biochem. J,110, 49–52 (1968).Google Scholar
  72. 72.
    D. F. Heath, The decomposition and toxicity of dialkylnitrosamines in rats,Biochem. J. 85, 72–91 (1962).Google Scholar
  73. 73.
    IARC,Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Supplement 4,Chemicals, Industrial Processes and Industries Associated with Cancer in Humans, IARC, Lyon (1982).Google Scholar
  74. 74.
    J. Ellenberger and G. Mohn, Mutagenic activity of major mammalian metabolites of cyclophosphamide toward several genes ofEscherichia coli, J. Toxicol. Environ. Health 3, 585–599 (1977).CrossRefGoogle Scholar
  75. 75.
    J. J. Wong and D. P. H. Hsieh, Mutagenicity of aflatoxins related to their metabolism and carcinogenic potential,Proc. Natl. Acad. Sci. USA 73, 2241–2244 (1976).CrossRefGoogle Scholar
  76. 76.
    G. R. Mohn, P. R. M. Kerklaan, A. A. van Zeeland, J. Ellenberger, R. A. Baan, P. H. M. Lohman, and F. W. Pons, Methodologies for the determination of various genetic effects in permeable strains ofE. coli K-12 differing in DNA repair capacity. Quantification of DNA adduct formation, experiments with organ homogenates and hepatocytes, and animal-mediated assays,Mutation Res.125, 153–184 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • G. R. Mohn
    • 1
  • P. R. M. Kerklaan
    • 1
  • P. A. van Elburg
    • 1
  1. 1.Department of Radiation Genetics and Chemical MutagenesisState University of LeidenAL LeidenThe Netherlands

Personalised recommendations