Advertisement

Induction of Bacteriophage Lambda by DNA-Interacting Chemicals

  • Rosalie K. Elespuru
Chapter

Abstract

Induction of resident prophages in coliform bacteria occurs as an indirect consequence of damage to the DNA of the host bacteria. The change in bacteriophage gene expression from the repressed to the active state (induction) is one of the manifestations of the “SOS response,” among such others as mutagenesis, increased DNA repair activity, filamentation, and suppression of respiration.(33,50,53,64,71)The SOS functions have in common the property of being controlled at the level of transcription by repressors that bind to DNA and prevent its expression. Prophages are regulated by specific repressors encoded by phage genes, while many other SOS functions are repressed by a single repressor protein called LexA. The operator regions adjacent to the genes encoding these SOS functions contain sequences to which LexA protein,(10,58) or phage repressors such as lambda, bind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. A. Anderson, P. L. Moreau, R. Devoret, and R. Maral, Induction of prophage λ by daunorubicin and derivatives: Correlation with antineoplastic activity,Mutat. Res. 77, 197–208 (1980).CrossRefGoogle Scholar
  2. 2.
    B. N. Ames, W. E. Durston, E. Yamasaki, and F. D. Lee, Carcinogens are mutagens: A simple test system combining liver homogenates for activation and bacteria for detection,Proc. Natl. Acad. Sci. USA 70, 2281–2285 (1973).CrossRefGoogle Scholar
  3. 3.
    J. Ashby, B. Kilbey, T. Kada, M. Green, M. Mandel, D. Tweats, H. Rosenkraz, C. Dambly, J. Thomson, and B. Rabin, Summary report on the performance of bacterial repair, phage induction, degranulation and nuclear enlargement assays, in:Progress in Mutation Research, Evaluation of Short–Term Tests for Carcinogens (F. J. deSerres and J. Ashby, eds.) Vol. 1, pp. 219–223, Elsevier/North-Holland, New York (1981).Google Scholar
  4. 4.
    W. M. Barnes, R. B. Siegel, and W. S. Reznikoff, The construction of λ transducing phages containing deletions defining regulatory elements of thelac andtrp operons inE. coli, Mol Gen. Genet.129, 201–215 (1974).CrossRefGoogle Scholar
  5. 5.
    J. Baluch, J. W. Chase, and R. Sussman, Synthesis ofrecA protein and induction of bacteriophage lambda in single-strand deoxyribonucleic acid-binding protein mutants ofEscherichia coli, J. Bacteriol.144, 489–498 (1980).Google Scholar
  6. 6.
    R. Ben-Gurion, A simple plate test for screening colicine-inducing substrates as a tool for the detection of potential carcinogens,Mutat. Res. 54, 289–295 (1978).CrossRefGoogle Scholar
  7. 7.
    W. F. Benedict, M. S. Baker, L. Haroun, and B. N. Ames, Mutagenicity of cancer chemotherapeutic agents in theSalmonella/microsome test,Cancer Res.37, 2209–2213 (1977).Google Scholar
  8. 8.
    M. Blanco and L. Pomes, Prophage induction inEscherichia coli K12 cells deficient in DNA polymerase I.Mol. Gen. Genet. 154, 287–292 (1977).CrossRefGoogle Scholar
  9. 9.
    B. A. Bridges, R. P. Mottershead, M. H. L. Green, and W. J. H. Gray, Mutagenicity of dichlorvos and methylmethanesulfonate forEscherichia coli WP2 and some derivatives deficient in DNA repair,Mutat. Res. 19, 295–303 (1973).CrossRefGoogle Scholar
  10. 10.
    R. Brent and M. Ptashne, Mechanism of action of thelexA gene product,Proc. Natl Acad. Sci. USA 78 4204–4208 (1981).CrossRefGoogle Scholar
  11. 11.
    M. J. Casadaban and S. N. Cohen, Lactose genes fused to exogenous promotors in one step using amu-lac bacteriophage:In vivo probe for transcriptional control sequences,Proc. Natl. Acad. Sci. USA 76, 4530–4533 (1979).CrossRefGoogle Scholar
  12. 12.
    S. P. Cohen, J. Resnick, and R. Sussman, Interaction of single–strand binding protein andrecA protein at the single-stranded DNA site,J. Mol. Biol. 167, 901–909 (1983).CrossRefGoogle Scholar
  13. 13.
    N. L. Craig and J. W. Roberts,E. coli recA protein-directed cleavage of phage X repressor requires polynucleotide,Nature 283, 26–30 (1980).CrossRefGoogle Scholar
  14. 14.
    R. M. Crowl, R. P. Boyce, and H. Echols, Repressor cleavage as a prophage induction mechanism: Hypersensitivity of a mutant Xcl protein to RecA-mediated proteolysis,J. Mol. Biol. 152, 815–819 (1981).CrossRefGoogle Scholar
  15. 15.
    C. Dambly, Z. Toman, and M. Radman, Zorotest, in:Progress in Mutation Research, Evaluation of Short-Term Tests for Carcinogens (F. J. de Serres and J. Ashby, eds.), Vol. 1, pp. 219–223, Elsevier/North-Holland, New York (1981).Google Scholar
  16. 16.
    J. W. Drake and R. H. Baltz, The biochemistry of mutagenesis,in: Annu. Rev. Biochem.45, 1n37 (1976).CrossRefGoogle Scholar
  17. 17.
    R. K. Elespuru, A biochemical phage-induction assay for carcinogens in:Topics in Environmental Physiology and Medicine, Short-Term Tests for Chemical Carcinogens (H. Stich and R. H. C. San, eds.), pp. 1–11, Springer-Verlag, New York (1981).CrossRefGoogle Scholar
  18. 18.
    R. K. Elespuru, Induction of bacteriophage lambda by N-nitroso compounds, in:Topics in Chemical Mutagenesis Vol. 1,N-Nitrosamines (T. K. Rao, W. Lijinsky, and J. L. Epler, eds.), pp. 91–114, Springer Science+Business Media New York (1984).Google Scholar
  19. 19.
    R. K. Elespuru and R. J. White, Biochemical prophage induction assay: A rapid test for antitumor agents that interact with DNA,Cancer Res.43, 2819–2830 (1983).Google Scholar
  20. 20.
    R. K. Elespuru and M. B. Yarmolinsky, A colorimetric assay of lysogenic induction designed for screening potential carcinogenic and carcinostatic agents,Environ. Mutagen. 1, 65–78 (1979).CrossRefGoogle Scholar
  21. 21.
    H. Endo, M. Ishizawa, T. Kamiya, and S. Sonoda, Relation between tumoricidal and prophage-inducing action,Nature 198, 258–260 (1963).CrossRefGoogle Scholar
  22. 22.
    S. S. Epstein and I. B. Saporoschetz, On the association between lysogeny and carcinogenicity in nitroquinolines and related compounds,Experientia 24, 1245–1248 (1968).CrossRefGoogle Scholar
  23. 23.
    W. F. Fleck, Development of microbiological screening methods for detection of new antibiotics,Postepy. Hig. Med. Dosw. 28, 479–498 (1974).Google Scholar
  24. 24.
    M. Geliert, K. Mizuuchi, M. H. O’Dea, T. Itoh, and J.-I. Tomizawa, Nalidixic acid resistance: A second genetic character involved in DNA gyrase activity,Proc. Natl. Acad. Sci. USA 74, 4772–4776 (1977).CrossRefGoogle Scholar
  25. 25.
    M. M. Gottesman, M. L. Hicks, and M. Geliert, Genetics and function of DNA ligase inEscherichia coli, J. Mol. Biol.77, 531–547 (1973).CrossRefGoogle Scholar
  26. 26.
    A. Goze, A. Sarasin, Y. Moule, and R. Devoret, Induction and mutagenesis of prophage λ inE. coli Kl2 by metabolites of aflatoxin B1,Mutat. Res. 28, 1–7 (1975).CrossRefGoogle Scholar
  27. 27.
    D. Grunberger and I. B. Weinstein, Conformational changes in nucleic acids modified by chemical carcinogens, in:Chemical Carcinogens and DNA (P. L. Grover, ed.), Vol. II, pp. 59–93, CRC Press, Boca Raton, Florida (1979).Google Scholar
  28. 28.
    B. Heinemann, Prophage induction in lysogenic bacteria as a method of detecting potential mutagenic, carcinogenic, carcinostatic, and teratogenic agents, in:Chemical Mutagens, Principles and Methods for Their Detection, Vol. 1 (A. Hollander, ed.), pp. 235– 266, Springer Science+Business Media New York (1971).Google Scholar
  29. 29.
    K. Hemminki, Nucleic acid adducts of chemical carcinogens and mutagens,Arch. Toxicol. 52, 249–285 (1983).CrossRefGoogle Scholar
  30. 30.
    Y. Ishii and S. Kondo, Comparative analysis of deletion and base change mutabilities ofEscherichia coli B strains differing in DNA repair capacity (wild-type,uvrA, polA, recA) by various mutagens,Mutat. Res. 27, 27–44 (1975).CrossRefGoogle Scholar
  31. 31.
    Y. L. Ho and S. K. Ho, The screening of carcinogens with the prophage λcIts857 induction test,Cancer Res.41, 532–536 (1981).Google Scholar
  32. 32.
    P. Karran, T. Hjelmgren, and T. Lindahl, Induction of a DNA glycosylase for N- methylated purines is part of the adaptive response to alkylating agents,Nature 296, 770–773 (1982).CrossRefGoogle Scholar
  33. 33.
    C. J. Kenyon and G. C. Walker, DNA-damaging agents stimulate gene expression at specific loci inEscherichia coli, Proc. Natl. Acad. Sci. USA 77, 2819–2823 (1980).CrossRefGoogle Scholar
  34. 34.
    D. E. Levin, M. Hollstein, M. F. Christman, E. A. Schwiers, and B. N. Ames, A newSalmonella tester strain (TA 102) with A·T base pairs at the site of mutation detects oxidative mutagens,Proc. Natl. Acad. Sci. USA 79 7445–7449 (1982).CrossRefGoogle Scholar
  35. 35.
    A. Levine, P. L. Moreau, S. G. Sedgwick, R. Devoret, S. Adhya, M. Gottesman, and A. Das, Expression of a bacterial gene turned on by a potent carcinogen,Mutat. Res. 50, 29–35 (1978).CrossRefGoogle Scholar
  36. 36.
    J. W. Little and P. C. Hanawalt, Induction of protein X inEscherichia coli, Mol. Gen. Genet.150, 237–248 (1977).CrossRefGoogle Scholar
  37. 37.
    J. W. Little, S. H. Edmiston, L. Z. Pacelli, and D. W. Mount, Cleavage of theEscherichia coli LexA protein by the RecA protease,Proc. Natl. Acad. Sci. USA 77, 3225–3229 (1980).CrossRefGoogle Scholar
  38. 38.
    J. D. Love, C. D. Liarakos, and R. E. Moses, Non–specific cleavage of ΦX174 RFI deoxyribonucleic acid by bleomycin,Biochemistry 20, 5331–5336 (1981).CrossRefGoogle Scholar
  39. 39.
    A. Lwoff, LysogenyBacteriol. Rev.17, 269–337 (1953).Google Scholar
  40. 40.
    S. N. Mamber, V. Bryson, and S. E. Katz, Evaluation of theEscherichia coli K12 Inductest for determination of potential chemical carcinogens,Mutat. Res.,130, 141– 151 (1984).Google Scholar
  41. 41.
    V. W. Mayer, M. G. Gabridge, and R. J. Oswald, Rapid plate test for evaluating phage induction capacity,Appl. Microbiol. 18, 697–698 (1969).Google Scholar
  42. 42.
    J. McCann, E. Choi, E. Yamasaki, and B. N. Ames, Detection of carcinogens as mutagens in theSalmonella/microsome test: Assay of 300 chemicals,Proc. Natl. Acad. Sci. USA 72 5135–5139 (1975).CrossRefGoogle Scholar
  43. 43.
    N. E. McCarroll, B. H. Keech, and C. E. Piper, A microsuspension adaptation of theBacillus subtilis “rec” assay,Environ. Mutagen. 3, 607–616 (1981).CrossRefGoogle Scholar
  44. 44.
    P. Moreau, A. Bailone, and R. Devoret, Prophage λ induction inEscherichia coli K12envA uvrB: A highly sensitive test for potential carcinogens,Proc. Natl. Acad. Sci. USA 73, 3700–3704 (1976).CrossRefGoogle Scholar
  45. 45.
    A. Morrison and N. R. Cozzarelli, Site–specific cleavage of DNA byE. coli DNA gyrase,Celi 17, 175–184 (1979).CrossRefGoogle Scholar
  46. 46.
    M. Oishi, R. M. Irbe, and L. M. E. Morin, Molecular mechanism for the induction of “SOS” functions, in:Progress in Nucleic Acids Research and Molecular Biology (W. Cohn, ed.), Vol. 26, pp. 281–301, Academic Press, NY (1981).Google Scholar
  47. 47.
    A. O. Olson and K. M. Baird, Single–strand breaks inEscherichia coli DNA caused by treatment with nitrosoguanidine,Biochem. Biophys. Acta 179, 513–514 (1969).Google Scholar
  48. 48.
    D. M. Podger and G. W. Grigg, Mutagenicity of bleomycins, phleomycins and tallysomycins inSalmonella typhimurium, Mutat. Res.117, 9–19 (1983).CrossRefGoogle Scholar
  49. 49.
    P. Quillardet, O. Huisman, R. O’Ari, and M. Hofnung, SOS chromotest, a direct assay of induction of an SOS function inE. coli K12 to measure genotoxicity,Proc. Natl. Acad. Sci. USA 79, 5971–5975 (1982).CrossRefGoogle Scholar
  50. 50.
    M. Radman, SOS repair hypothesis, in:Molecular Mechanisms for Repair of DNA (P. C. Hanawalt and R. B. Setlow, eds.), Part A, pp. 355–368,.Google Scholar
  51. 51.
    M. Radman, G. Villani, S. Boiteau, M. Defais, P. Caillet-Fauquet, and P. Spadari, On the mechanism and control of mutagenesis due to carcinogenic mutagens, in:Origins of Human Cancer (J. P. Watson and H. Hiatt, eds.), pp. 903–922, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1983).Google Scholar
  52. 52.
    J. Resnick and R. Sussman,Escherichia coli single strand DNA binding protein from wild type andlexC113 mutant affectin vitro proteolytic cleavage of phage/repressor,Proc. Natl. Acad. Sci USA 79, 2832–2835 (1982).CrossRefGoogle Scholar
  53. 53.
    J. Roberts and R. Devoret, Lysogenic induction, in:Lambda II (R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), pp. 123–144, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1983).Google Scholar
  54. 54.
    J. W. Roberts and C. W. Roberts Proteolytic cleavage of bacteriophage lambda repressor in induction,Proc. Natl. Acad. Sci. USA 72, 147–151 (1975).CrossRefGoogle Scholar
  55. 55.
    J. W. Roberts, C. W. Roberts, and N. L. Craig,Escherichia coli recA gene product inactivates phage X repressor,Proc. Natl. Acad. Sci. USA 75, 4714–4718 (1978).CrossRefGoogle Scholar
  56. 56.
    W. Rojanapo, M. Nagao, T. Kawachi, and T. Sugimura, Prophage induction test (Inductest) of anti-tumor antibiotics,Mutat. Res. 88, 325–335, (1981).CrossRefGoogle Scholar
  57. 57.
    T. G. Rossman, M. Molina, and L. W. Meyer, The genetic toxicology of metal compounds: I. Induction of λ prophage inE. coli WP2S(λ),Environ. Mutagen.6, 59– 69 (1984).CrossRefGoogle Scholar
  58. 58.
    G. B. Sancar, A. Sancar, J. W. Little, and W. D. Rupp, TheuvrB gene ofEscherichia coli has bothlexA–repressed andlexA-independent promoters,Cell 28, 523–530 (1982).CrossRefGoogle Scholar
  59. 59.
    J. P. Sciler, Influence of composition and treatment of the growth media on the yield of mutant colonies, in:Progress in Mutation Research, Progress in Environmental Mutagenesis and Carcinogenesis (A. Kappas, ed.), Vol. 2, pp. 155–158, Elsevier/North-Holland (1981).Google Scholar
  60. 60.
    C. L. Smith and M. Oishi, The molecular mechanism of virus induction. I. A procedure for the biochemical assay of prophage induction,Mol. Gen. Genet. 148, 131–138 (1976).CrossRefGoogle Scholar
  61. 61.
    C. L. Smith and M. Oishi, Early events and mechanisms in the induction of bacterial SOS functions: Analysis of the phage repressor inactivation processin vivo, Proc. Natl. Acad. Sci. USA 75, 1657–1661 (1978).CrossRefGoogle Scholar
  62. 62.
    W. T. Speck, R. M. Santella, and H. S. Rosenkranz, An evaluation of the prophage lambda induction (Inductest) for the detection of potential carcinogens,Mutat. Res. 54, 101–104 (1978).CrossRefGoogle Scholar
  63. 63.
    R. Sussman, J. Resnick, K. Calame, and J. Baluch, Interaction of bacteriophage λ repressor with nonoperator DNA containing single strand gaps,Proc. Natl. Acad. Sci. USA 75, 5817–5821 (1978).CrossRefGoogle Scholar
  64. 64.
    H. Suzuki, K. Nagai, H. Yamaki, N. Tanaka, and H. Umezawa, On the mechanism of action of bleomycin: Scission of DNA strandsin vitro andin vivo, J. Antibiot.22, 446–448 (1969).CrossRefGoogle Scholar
  65. 65.
    P. A. Swenson, Physiological responses ofEscherichia coli to far-ultraviolet irradiation,Photochem. Photobiol. Rev. 1976, 269–387.Google Scholar
  66. 66.
    J. A. Thomson, Mutagenic activity of 42 coded compounds in the lambda induction assay, in:Progress in Mutation Research, Evaluation of Short-term Tests for Carcinogens (F. J. deSerres and J. Ashby, eds.), Vol. 1, pp. 224–235, Elsevier/North-Holland, New York (1981).Google Scholar
  67. 67.
    Z. Toman, C. Dambly, and M. Radman, Induction of stable, heritable epigenetic change by mutagenic carcinogens: A new test system, in:Molecular and Cellular Aspects of Carcinogen Screening Tests (IARC Scientific Publications No. 27) (R. Montesano, H. Bartsch, and L. Tomatis, eds.), pp. 243–255, International Agency for Research on Cancer, Lyon (1980).Google Scholar
  68. 68.
    L. D. Vales, J. W. Chase, and J. B. Murphy, Effect ofssbAl andlexC113 mutations on lambda prophage induction, bacteriophage growth, and cell survival,J. Bacteriol. 143, 887–896 (1980).Google Scholar
  69. 69.
    G. M. Weinstock and K. McEntee, RecA protein-dependent proteolysis of bacteriophage λ repressor: Characterization of the reaction and stimulation by DNA-binding proteins,J. Biol Chem. 256, 10883–10888 (1981).Google Scholar
  70. 70.
    S. C. West, E. Cassuto, J. Mursalim, and P. Howard–Flanders, Recognition of duplex DNA containing single-stranded regions by RecA protein,Proc. Natl Acad. Sci. USA 77, 2569–2573 (1980).CrossRefGoogle Scholar
  71. 71.
    L. Wheeler, M. Halula, and M. Demeo, A comparison of aflatoxin B-l induced cytotoxicity and prophage induction inSalmonella typhimurium mutagen tester strains TA1535, TA1538, TA98 and TA100,Mutat. Res. 83, 39–48 (1981).CrossRefGoogle Scholar
  72. 72.
    E. M. Witkin, Ultraviolet mutagenesis and inducible DNA repair inEscherichia coli, Bacteriol Rev.40, 869–907 (1976).Google Scholar
  73. 73.
    M. B. Yarmolinsky and H. Wiesmeyer, Regulation by coliphage lambda of the expression of the capacity to synthesize a sequence of host enzymes,Proc. Natl. Acad. Sci. USA 46, 1626–1645 (1960).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Rosalie K. Elespuru
    • 1
  1. 1.Fermentation Program NCI–Frederick Cancer Research FacilityFrederickUSA

Personalised recommendations